1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
"""
Tests the performance of torch.nn.MultiheadAttention's fast path (BetterTransformer)
vs the slow path (torch.nn.functional.multi_head_attention)
To run this script install these dependencies:
pip install tqdm
pip install prettytable
"""
import argparse
import itertools
import json
import random
import warnings
from collections import defaultdict, OrderedDict
from pathlib import Path
from pprint import pprint
from typing import Optional
import numpy as np
from prettytable import PrettyTable
from tqdm import tqdm
import torch
warnings.filterwarnings("ignore")
error_dict = defaultdict(int)
def benchmark_torch_function(iters, f, *args, **kwargs):
f(*args, **kwargs)
f(*args, **kwargs)
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(iters):
f(*args, **kwargs)
end_event.record()
torch.cuda.synchronize()
# elapsed_time has a resolution of 0.5 microseconds:
# but returns milliseconds, so we need to multiply it to increase resolution
return start_event.elapsed_time(end_event) * 1000 / iters, *f(*args, **kwargs)
def run(
a: int,
b: int,
iters: int,
batch_size: int,
sequence_length: int,
embed_dim: int,
num_heads: int,
device: str,
dtype: str,
block_size: int,
seed,
):
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
from scipy.stats import beta
lengths = (
beta.rvs(a, b, size=batch_size)
* (sequence_length + block_size - 1)
// block_size
)
lengths = list(map(int, list(lengths)))
lengths = [l * block_size for l in lengths]
lengths = [max(l, block_size) for l in lengths]
# Used to enforce no padding
# lengths = [sequence_length] * batch_size
# Ensure one row in the batch of ele has the max_sequence_length
lengths[random.randint(0, batch_size - 1)] = sequence_length
q = [torch.randn(l, embed_dim, device=device, dtype=dtype) for l in lengths]
q = torch.nested.nested_tensor(q, device=device, dtype=dtype)
k, v = q, q
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
proj = torch.nn.Linear(embed_dim, embed_dim, device=device, dtype=dtype)
native_mha = torch.nn.MultiheadAttention(
embed_dim, num_heads, batch_first=True, device=device, dtype=dtype
).eval()
native_mha.in_proj_weight = qkv.weight
native_mha.in_proj_bias = qkv.bias
native_mha.out_proj.weight = proj.weight
native_mha.out_proj.bias = proj.bias
# Create query mask
q_mask = torch.nested.to_padded_tensor(
torch.nested.nested_tensor(
[torch.tensor([True] * length, dtype=torch.bool) for length in lengths]
),
0,
)
q_mask = q_mask.cuda()
if q_mask.size(1) == 0:
return None
# Benchmark the native MHA in core
with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True):
with torch.inference_mode():
time_native_mha_fast, y_native_mha_fast, _ = benchmark_torch_function(
iters, native_mha, q, k, v, need_weights=False
)
q = q.to_padded_tensor(0)
k = q
v = q
# Internal Flash Attention
time_native_mha_slow, y_native_mha_slow, _ = benchmark_torch_function(
iters, native_mha, q, k, v, key_padding_mask=~q_mask, need_weights=False
)
# Convert to padded for comparison
if y_native_mha_fast.is_nested:
y_native_mha_fast = torch.nested.to_padded_tensor(y_native_mha_fast, 0)
y_native_mha_fast = y_native_mha_fast * q_mask.unsqueeze(-1)
if y_native_mha_slow.is_nested:
y_native_mha_slow = torch.nested.to_padded_tensor(y_native_mha_slow, 0)
y_native_mha_slow = y_native_mha_slow * q_mask.unsqueeze(-1)
# Correctness check
entry_name = f"batch:{batch_size}_seq_len:{sequence_length}_n_heads:{num_heads}_embed_dim:{embed_dim}"
try:
torch.testing.assert_close(
y_native_mha_fast, y_native_mha_slow, atol=1e-3, rtol=1e-3
)
except AssertionError:
error_dict[entry_name] += 1
pprint(error_dict)
# Calculate amount of padding
padding = 1 - q_mask.float().mean().item()
# Calculate the speedup for flash attention
speedup_fast_internal = time_native_mha_slow / time_native_mha_fast
result_entry = OrderedDict()
result_entry["dtype"] = dtype
result_entry["batch_size"] = batch_size
result_entry["sequence_length"] = sequence_length
result_entry["n_heads"] = num_heads
result_entry["embed_dim"] = embed_dim
result_entry["time_native_mha_slow(\u00b5s)"] = f"{time_native_mha_slow:.3f}"
result_entry["time_native_mha_fast (\u00b5s)"] = f"{time_native_mha_fast:.3f}"
result_entry["speedup flash_mha v native_mha"] = f"{speedup_fast_internal:.3f}"
result_entry["padding"] = f"{padding:.3f}"
return result_entry
def main(save_path: Optional[Path], error_path: Optional[Path]):
table = PrettyTable()
entries = defaultdict(list)
print("CUDA device: ", torch.cuda.get_device_name(0))
iters = 100
header = None
batch_sizes = [16, 32, 64, 128, 256]
sequence_lengths = [64, 128, 256, 512]
embed_dims = [512, 1024]
num_heads_list = [8, 16]
betas = range(1, 64, 4)
for batch_size, sequence_length, embed_dim, num_heads, block_size, b in tqdm(
list(
itertools.product(
batch_sizes, sequence_lengths, embed_dims, num_heads_list, [2], betas
)
)
):
seed = 26214 # Magic number that works well for higher b values
entry = run(
1,
b * 0.05,
iters,
batch_size,
sequence_length,
embed_dim,
num_heads,
"cuda",
torch.float16,
block_size,
seed,
)
if entry is None:
continue
if header is None:
table.field_names = list(entry.keys())
header = list(entry.keys())
row = []
for k, v in entry.items():
row.append(v)
entries[k].append(v)
table.add_row(row)
# Print the full table to console
print(table)
pprint(error_dict)
csv_string = table.get_csv_string()
if save_path is not None:
with open(save_path, "w") as csvfile:
csvfile.write(csv_string)
print(f"Total errors: {sum(error_dict.values())}")
if error_path is not None:
with open(error_path, "w") as file:
file.write(json.dumps(error_dict))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save-path", "--save_path", type=str, help="Path to save the results"
)
parser.add_argument(
"--error-save-path",
"--error_save_path",
type=str,
help="Path to save the errors",
)
args = parser.parse_args()
save_path = Path(args.save_path) if args.save_path else None
error_path = Path(args.error_save_path) if args.error_save_path else None
main(save_path, error_path)
|