File: score_mod.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (681 lines) | stat: -rw-r--r-- 19,967 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
import argparse
import csv
import itertools
from collections import defaultdict
from dataclasses import asdict, dataclass
from functools import partial
from typing import Callable, List, Optional, Tuple

import numpy as np
from tabulate import tabulate
from tqdm import tqdm

import torch
import torch.nn.functional as F
from torch.nn.attention.flex_attention import (
    _create_empty_block_mask,
    create_block_mask,
    create_mask,
    flex_attention,
)


torch._dynamo.config.automatic_dynamic_shapes = False
# Needed since changing args to function causes recompiles
torch._dynamo.config.cache_size_limit = 1000


from torch._inductor.runtime.benchmarking import benchmarker


def benchmark_torch_function_in_microseconds(func: Callable, *args, **kwargs) -> float:
    # warmup
    for _ in range(5):
        func(*args, **kwargs)
    return benchmarker.benchmark_gpu(lambda: func(*args, **kwargs)) * 1e3


@dataclass(frozen=True)
class ExperimentConfig:
    shape: Tuple[int]
    score_mod: Callable
    mask_mod: Callable
    dtype: torch.dtype
    calculate_bwd_time: bool
    cal_bandwidth: bool

    def __post_init__(self):
        assert (
            len(self.shape) == 6
        ), "Shape must be of length 6"  # [B, Hq, M, Hkv, N, D]

    def asdict(self):
        # Convert the dataclass instance to a dictionary
        d = asdict(self)
        # Remove the 'calculate_bwd_time' and `cal_bandwidth` key
        d.pop("calculate_bwd_time", None)
        d.pop("cal_bandwidth", None)
        d["shape(B,Hq,M,Hkv,N,D)"] = d.pop("shape")
        return d


@dataclass(frozen=True)
class Times:
    eager_time: float
    compiled_time: float


@dataclass(frozen=True)
class ExperimentResults:
    fwd_times: Times
    bwd_times: Optional[Times]


@dataclass(frozen=True)
class Experiment:
    config: ExperimentConfig
    results: ExperimentResults

    def asdict(self):
        dict1 = self.config.asdict()
        dict2 = asdict(self.results)
        return {**dict1, **dict2}


def generate_inputs(
    batch_size: int,
    q_heads: int,
    q_sequence_length: int,
    kv_heads: int,
    kv_sequence_length: int,
    head_dim: int,
    dtype: torch.dtype,
    device: torch.device,
    requires_grad: bool,
):
    q_shape = (batch_size, q_sequence_length, q_heads * head_dim)
    kv_shape = (batch_size, kv_sequence_length, kv_heads * head_dim)

    assert q_heads % kv_heads == 0

    make_q = partial(
        torch.rand, q_shape, device=device, dtype=dtype, requires_grad=requires_grad
    )
    make_kv = partial(
        torch.rand, kv_shape, device=device, dtype=dtype, requires_grad=requires_grad
    )
    query = (
        make_q().view(batch_size, q_sequence_length, q_heads, head_dim).transpose(1, 2)
    )
    key = (
        make_kv()
        .view(batch_size, kv_sequence_length, kv_heads, head_dim)
        .transpose(1, 2)
    )
    value = (
        make_kv()
        .view(batch_size, kv_sequence_length, kv_heads, head_dim)
        .transpose(1, 2)
    )
    return query, key, value


def run_single_experiment(
    config: ExperimentConfig,
    dynamic=False,
    max_autotune=False,
) -> ExperimentResults:
    device = torch.device("cuda")
    batch_size, q_heads, q_seq_len, kv_heads, kv_seq_len, head_dim = config.shape
    query, key, value = generate_inputs(
        batch_size,
        q_heads,
        q_seq_len,
        kv_heads,
        kv_seq_len,
        head_dim,
        config.dtype,
        device,
        requires_grad=config.calculate_bwd_time,
    )

    kwargs = {}
    if get_func_name(config.mask_mod) == "causal":
        kwargs["is_causal"] = True

    def eager_sdpa(query, key, value, attn_mask):
        out = F.scaled_dot_product_attention(query, key, value, attn_mask, **kwargs)
        return out.reshape(batch_size, q_heads, q_seq_len, head_dim)

    if max_autotune:
        compiled_sdpa = torch.compile(
            flex_attention, dynamic=dynamic, mode="max-autotune-no-cudagraphs"
        )
    else:
        compiled_sdpa = torch.compile(flex_attention, dynamic=dynamic)

    score_mod = config.score_mod
    mask_mod = config.mask_mod

    if mask_mod:
        block_mask = create_block_mask(
            mask_mod, 1, 1, q_seq_len, kv_seq_len, query.device
        )
    else:
        block_mask = _create_empty_block_mask(query, key)

    if mask_mod and get_func_name(mask_mod) != "causal":
        attn_mask = create_mask(mask_mod, 1, 1, query.shape[-2], key.shape[-2])
    else:
        attn_mask = None

    # Broadcast query/key for eager.
    b_key = torch.repeat_interleave(key, q_heads // kv_heads, dim=1)
    b_value = torch.repeat_interleave(value, q_heads // kv_heads, dim=1)

    forward_eager_time = benchmark_torch_function_in_microseconds(
        eager_sdpa, query, b_key, b_value, attn_mask
    )
    forward_compiled_time = benchmark_torch_function_in_microseconds(
        compiled_sdpa,
        query,
        key,
        value,
        score_mod=score_mod,
        block_mask=block_mask,
        enable_gqa=True,
    )

    out_eager = eager_sdpa(query, b_key, b_value, attn_mask)
    out_compile = compiled_sdpa(
        query,
        b_key,
        b_value,
        score_mod=score_mod,
        block_mask=block_mask,
        enable_gqa=True,
    )

    if score_mod is None:
        torch.testing.assert_close(out_eager, out_compile, atol=1e-2, rtol=1e-2)

    if config.calculate_bwd_time:
        out_eager = eager_sdpa(query, b_key, b_value, attn_mask)
        dOut = torch.randn_like(out_eager)
        backward_eager_time = benchmark_torch_function_in_microseconds(
            out_eager.backward, dOut, retain_graph=True
        )

        out_compile = compiled_sdpa(
            query,
            key,
            value,
            score_mod=score_mod,
            block_mask=block_mask,
            enable_gqa=True,
        )
        dOut = torch.randn_like(out_compile)
        backward_compile_time = benchmark_torch_function_in_microseconds(
            out_compile.backward, dOut, retain_graph=True
        )

        return ExperimentResults(
            fwd_times=Times(forward_eager_time, forward_compiled_time),
            bwd_times=Times(backward_eager_time, backward_compile_time),
        )
    else:
        return ExperimentResults(
            fwd_times=Times(forward_eager_time, forward_compiled_time),
            bwd_times=None,
        )


def calculate_speedup(results: ExperimentResults, type: str) -> float:
    if type == "fwd":
        return results.fwd_times.eager_time / results.fwd_times.compiled_time
    elif type == "bwd":
        assert results.bwd_times is not None
        return results.bwd_times.eager_time / results.bwd_times.compiled_time
    else:
        raise ValueError(f"Invalid type {type}")


def calculate_bandwidth(
    config: ExperimentConfig, results: ExperimentResults, type: str
) -> float:
    if type == "fwd":
        batch_size, q_heads, q_seq_len, kv_heads, kv_seq_len, head_dim = config.shape
        query_size = (
            batch_size
            * q_heads
            * q_seq_len
            * head_dim
            * torch.finfo(config.dtype).bits
            / 8
        )
        kv_size = (
            batch_size
            * kv_heads
            * kv_seq_len
            * head_dim
            * torch.finfo(config.dtype).bits
            / 8
            * 2
        )
        output_size = query_size
        total_size = (query_size + kv_size + output_size) / 1e9  # In GB
        time_in_seconds = results.fwd_times.compiled_time / 1e6
        return total_size / time_in_seconds / 1e3
    else:
        raise ValueError(f"Invalid type {type}")


def calculate_tflops(config: ExperimentConfig, results: ExperimentResults) -> float:
    (B, Hq, M, Hkv, N, D) = config.shape
    qk_flops = M * N * D * 2
    softmax_flops = M * N * 2  # Not counting online softmax overhead
    o_flops = M * D * N * 2
    # Not counting split k overhead
    total_flops = B * Hq * (qk_flops + softmax_flops + o_flops)
    return total_flops / results.fwd_times.compiled_time / 1e6  # in TFLOPs/


def get_func_name(func):
    if func is None:
        return "None"
    func_str = str(func)
    if "<locals>" in func_str:
        # For locally defined functions
        return func_str.split("<locals>.")[-1].split(" at ")[0]
    else:
        # For regular functions
        return func.__name__


def set_func_name(func, name):
    func.__name__ = name


def get_average_speedups(results: List[Experiment], type: str):
    # Calculate speedups
    speedups = [calculate_speedup(r.results, type) for r in results]

    # Find indices of max and min speedups
    max_speedup_index = np.argmax(speedups)
    min_speedup_index = np.argmin(speedups)

    # Get the config dictionaries
    max_config_dict = results[max_speedup_index].config.asdict()
    min_config_dict = results[min_speedup_index].config.asdict()

    # Extract function names from score_mod strings
    max_config_dict["score_mod"] = get_func_name(max_config_dict["score_mod"])
    max_config_dict["mask_mod"] = get_func_name(max_config_dict["mask_mod"])
    min_config_dict["score_mod"] = get_func_name(min_config_dict["score_mod"])
    min_config_dict["mask_mod"] = get_func_name(min_config_dict["mask_mod"])

    # Create table data
    table_data = [
        {
            "Type": "Average",
            "Speedup": np.mean(speedups),
            **dict.fromkeys(max_config_dict),
        },
        {"Type": "Max", "Speedup": speedups[max_speedup_index], **max_config_dict},
        {"Type": "Min", "Speedup": speedups[min_speedup_index], **min_config_dict},
    ]

    return table_data


def print_results(results: List[Experiment], save_path: Optional[str] = None):
    table_data = defaultdict(list)
    for experiment in results:
        for key, value in experiment.asdict().items():
            if key == "fwd_times":
                for name, time in value.items():
                    table_data[f"fwd_{name}"].append(float(time))
            elif key == "bwd_times":
                if experiment.config.calculate_bwd_time:
                    for name, time in value.items():
                        table_data[f"bwd_{name}"].append(float(time))
            else:
                table_data[key].append(value)

    # Calculate speedups
    fwd_speedups = [calculate_speedup(r.results, type="fwd") for r in results]
    table_data["fwd_speedup"] = fwd_speedups

    # Calculate mem + computational throughput
    if results[0].config.cal_bandwidth:
        fwd_bandwidth = [
            calculate_bandwidth(r.config, r.results, type="fwd") for r in results
        ]
        table_data["fwd_mem_bw (TB/s)"] = fwd_bandwidth
        fwd_tflops = [calculate_tflops(r.config, r.results) for r in results]
        table_data["TFlops/s"] = fwd_tflops

    if results[0].config.calculate_bwd_time:
        bwd_speedups = [calculate_speedup(r.results, type="bwd") for r in results]
        table_data["bwd_speedup"] = bwd_speedups

    table_data["score_mod"] = [get_func_name(func) for func in table_data["score_mod"]]
    table_data["mask_mod"] = [get_func_name(func) for func in table_data["mask_mod"]]

    print(tabulate(table_data, headers="keys", tablefmt="github", floatfmt=".3f"))
    print("\n")
    print("FWD Speedups".center(125, "="))
    print("\n")
    average_data = get_average_speedups(results, type="fwd")
    print(tabulate(average_data, headers="keys", tablefmt="github", floatfmt=".3f"))

    if results[0].config.calculate_bwd_time:
        print("\n")
        print("BWD Speedups".center(125, "="))
        print("\n")
        average_data = get_average_speedups(results, type="bwd")
        print(tabulate(average_data, headers="keys", tablefmt="github", floatfmt=".3f"))

    if save_path is not None:
        with open(save_path, "w", newline="") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=table_data.keys())
            writer.writeheader()
            for i in range(len(next(iter(table_data.values())))):
                row = {k: v[i] for k, v in table_data.items()}
                writer.writerow(row)
        print(f"\nResults saved to {save_path}")


def generate_score_mods(score_mods: List[str]) -> List[Callable | None]:
    def noop(score, b, h, m, n):
        return score

    def causal_mask(score, b, h, token_q, token_kv):
        return torch.where(token_q >= token_kv, score, float("-inf"))

    def relative_bias(score, b, h, m, n):
        return score + (m - n)

    def head_bias(score, b, h, m, n):
        return score + 2 * h

    function_dict = {
        "noop": None,
        "causal": None,
        "offset": None,
        "rel": relative_bias,
        "head_bias": head_bias,
    }
    return [function_dict[name] for name in score_mods]


def generate_mask_mods(score_mods: List[str]) -> List[Callable | None]:
    def noop(b, h, m, n):
        return True

    def causal(b, h, m, n):
        return m >= n

    def gen_offset(off):
        def offset(b, h, m, n):
            return m + off >= n

        return offset

    mask_mod_dict = {
        "noop": None,
        "causal": causal,
        "offset": gen_offset,
        "rel": None,
        "head_bias": None,
    }
    return [mask_mod_dict[name] for name in score_mods]


def generate_flash_configs(
    calculate_bwd: bool,
    dtype: torch.dtype,
    batch_sizes: List[int],
    num_heads: List[Tuple[int, int]],
    seq_lens: List[int],
    head_dims: List[int],
    score_mods_str: List[str],
    decoding: bool,
    kv_cache_size: List[int],
    cal_bandwidth: bool,
) -> List[ExperimentConfig]:
    assert not (calculate_bwd and decoding), "Decoding does not support backward"

    bs_seqlen_vals = [
        (32, 512),
        (16, 1024),
        (8, 2048),
        (4, 4096),
        (2, 8192),
        (1, 16384),
    ]
    causal_vals = [False, True]
    headdim_vals = [64, 128]
    dim = 2048

    score_mods = generate_score_mods(score_mods_str)
    mask_mods = generate_mask_mods(score_mods_str)
    all_configs = []

    for (
        (batch_size, seq_len),
        causal,
        head_dim,
        score_mod,
        mask_mod,
    ) in itertools.product(
        bs_seqlen_vals,
        causal_vals,
        headdim_vals,
        score_mods,
        mask_mods,
    ):
        num_heads = dim // head_dim

        if decoding:
            q_seq_len, kv_seq_len = 1, seq_len
        else:
            q_seq_len = kv_seq_len = seq_len

        all_configs.append(
            ExperimentConfig(
                shape=(
                    batch_size,
                    num_heads,
                    q_seq_len,
                    num_heads,
                    kv_seq_len,
                    head_dim,
                ),
                score_mod=score_mod,
                mask_mod=mask_mod,
                dtype=dtype,
                calculate_bwd_time=calculate_bwd,
                cal_bandwidth=cal_bandwidth,
            )
        )

    return all_configs


def generate_experiment_configs(
    calculate_bwd: bool,
    dtype: torch.dtype,
    batch_sizes: List[int],
    num_heads: List[Tuple[int, int]],
    seq_lens: List[int],
    head_dims: List[int],
    score_mods_str: List[str],
    decoding: bool,
    kv_cache_size: List[int],
    cal_bandwidth: bool,
) -> List[ExperimentConfig]:
    assert not (calculate_bwd and decoding), "Decoding does not support backward"

    if decoding:
        q_kv_seq_lens = [(1, i) for i in seq_lens]  # only testing query length == 1
    else:
        q_kv_seq_lens = [(i, i) for i in seq_lens]  # only testing q_len == kv_len
    dtypes = [dtype]
    score_mods = generate_score_mods(score_mods_str)
    mask_mods = generate_mask_mods(score_mods_str)
    all_configs = []
    for (
        bsz,
        (q_heads, kv_heads),
        (q_seq_len, kv_seq_len),
        head_dim,
        (score_mod, mask_mod),
        dtype,
    ) in itertools.product(
        kv_cache_size if kv_cache_size else batch_sizes,
        num_heads,
        q_kv_seq_lens,
        head_dims,
        zip(score_mods, mask_mods),
        dtypes,
    ):
        if kv_cache_size:
            head_size_bytes = torch.finfo(dtype).bits / 8 * head_dim
            bsz = int(
                (bsz * 1024 * 1024) // (kv_heads * kv_seq_len * head_size_bytes * 2)
            )
            if bsz <= 0:
                continue

        assert q_heads % kv_heads == 0

        if mask_mod and get_func_name(mask_mod) == "gen_offset":
            mask_mod = mask_mod(kv_seq_len // 2)

        all_configs.append(
            ExperimentConfig(
                shape=(bsz, q_heads, q_seq_len, kv_heads, kv_seq_len, head_dim),
                score_mod=score_mod,
                mask_mod=mask_mod,
                dtype=dtype,
                calculate_bwd_time=calculate_bwd,
                cal_bandwidth=cal_bandwidth,
            )
        )

    return all_configs


def main(args):
    seed = 123
    np.random.seed(seed)
    torch.manual_seed(seed)
    results = []
    for config in tqdm(
        generate_experiment_configs(
            args.calculate_bwd,
            args.dtype,
            args.b,
            args.nh,
            args.s,
            args.d,
            args.mods,
            args.decoding,
            args.kv_cache_size,
            args.throughput,
        )
    ):
        results.append(
            Experiment(
                config,
                run_single_experiment(
                    config,
                    dynamic=args.dynamic,
                    max_autotune=args.max_autotune,
                ),
            )
        )

    print_results(results, args.save_path)


def heads_input_type(s):
    try:
        hq, hkv = map(int, s.split(","))
        return hq, hkv
    except Exception as e:
        raise argparse.ArgumentTypeError("Heads must be Hq,Hkv") from e


if __name__ == "__main__":
    # Set up the argument parser
    parser = argparse.ArgumentParser(
        description="Run sweep over sizes and score mods for flex attention"
    )
    parser.add_argument(
        "--dynamic",
        action="store_true",
        help="Runs a dynamic shapes version of compiled flex attention.",
    )
    parser.add_argument(
        "--calculate-bwd", action="store_true", help="Calculate backward pass times"
    )

    parser.add_argument("-dtype", type=str, help="dtype", default="bfloat16")

    parser.add_argument(
        "-b", type=int, nargs="+", help="batch sizes", default=[2, 8, 16]
    )
    parser.add_argument(
        "-nh",
        type=heads_input_type,
        nargs="+",
        help="# of q-heads,kv-heads",
        default=[(16, 16), (16, 2)],
    )
    parser.add_argument(
        "-s", type=int, nargs="+", help="sequence lengths", default=[512, 1024, 4096]
    )
    parser.add_argument("-d", type=int, nargs="+", help="head dims", default=[64, 128])
    parser.add_argument(
        "-mods",
        type=str,
        nargs="+",
        help="score mods",
        default=["noop", "causal", "rel", "head_bias"],
    )
    parser.add_argument(
        "--max-autotune", action="store_true", help="Turn on max-autotune"
    )
    parser.add_argument(
        "--decoding",
        action="store_true",
        help="Benchmark Decoding (query sequence length = 1)",
    )
    parser.add_argument(
        "--kv-cache-size",
        type=int,
        nargs="+",
        required=False,
        help="""
key/value cache size in MiB.
Ignores -b batch size and calculate batch size from kv_cache size instead when specified.
""",
    )
    parser.add_argument(
        "--throughput",
        action="store_true",
        help="Calculate kernel memory bandwidth & computational throughput. ",
    )
    parser.add_argument(
        "--save-path",
        type=str,
        help="Path to save the results JSON file (optional)",
        default=None,
    )
    # Parse arguments
    args = parser.parse_args()
    args.dtype = getattr(torch, args.dtype)

    main(args)