1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
import argparse
import itertools
import random
import warnings
from dataclasses import dataclass
from pathlib import Path
from pprint import pprint
from typing import List, Optional
import numpy as np
from prettytable import PrettyTable
from tqdm import tqdm
import torch
import torch.utils.benchmark as benchmark
from torch.backends.cuda import sdp_kernel
warnings.filterwarnings("ignore")
@dataclass(frozen=True)
class ExperimentConfig:
batch_size: int
num_heads: int
max_sequence_len: int
embed_dimension: int
dtype: torch.dtype
pad_percentage: Optional[float]
enable_math: bool
enable_flash: bool
enable_mem_efficient: bool
enable_cudnn: bool
def get_entries(self) -> List:
return [
self.batch_size,
self.num_heads,
self.max_sequence_len,
self.embed_dimension,
self.dtype,
self.pad_percentage,
self.enable_math,
self.enable_flash,
self.enable_mem_efficient,
self.enable_cudnn,
]
@classmethod
def get_entry_names(cls) -> List[str]:
return [
"batch_size",
"num_heads",
"max_sequence_len",
"embed_dimension",
"dtype",
"pad_percentage",
"enable_math",
"enable_flash",
"enable_mem_efficient",
"enable_cudnn",
]
@dataclass(frozen=True)
class ExperimentResults:
nn_mha_time: float
compiled_nn_mha_time: Optional[float]
composite_mha_time: float
compiled_composite_mha_time: Optional[float]
def get_entries(self) -> List:
return [
f"{self.nn_mha_time:2f}",
f"{self.compiled_nn_mha_time:2f}" if self.compiled_nn_mha_time else None,
f"{self.composite_mha_time:2f}",
f"{self.compiled_composite_mha_time:2f}"
if self.compiled_composite_mha_time
else None,
]
@classmethod
def get_entry_names(cls) -> List[str]:
return [
"nn_mha_time (\u00b5s)",
"compiled_nn_mha_time (\u00b5s)",
"composite_mha_time (\u00b5s)",
"compiled_composite_mha_time (\u00b5s)",
]
@dataclass(frozen=True)
class Experiment:
config: ExperimentConfig
results: ExperimentResults
def get_entries(self) -> List:
return self.config.get_entries() + self.results.get_entries()
class CompositeMHA(torch.nn.Module):
def __init__(self, num_heads, in_proj_weight, in_proj_bias, out_proj):
super().__init__()
self.in_proj_weight = in_proj_weight
self.in_proj_bias = in_proj_bias
self.out_proj = out_proj
self.num_heads = num_heads
def forward(self, query, key, value, mask):
if not (query is key and key is value):
raise NotImplementedError(
"query, key and value must be the same Tensor for now."
)
if mask is not None:
raise NotImplementedError("mask is currently not supported.")
query_projected = torch.nn.functional.linear(
query, self.in_proj_weight, self.in_proj_bias
)
batch_size = query_projected.size(0)
embed_dim = query_projected.size(2)
head_dim = embed_dim // (self.num_heads * 3)
query, key, value = query_projected.chunk(3, -1)
query = query.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
attn = torch.nn.functional.scaled_dot_product_attention(
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
)
attn = attn.transpose(1, 2).reshape(batch_size, -1, self.num_heads * head_dim)
# Match return signature of nn.MHA
return self.out_proj(attn), None
def build_composite_mha_from_nn_mha(pt):
assert pt._qkv_same_embed_dim
in_proj_weight = pt.in_proj_weight
assert in_proj_weight is not None
assert pt.batch_first
return CompositeMHA(pt.num_heads, pt.in_proj_weight, pt.in_proj_bias, pt.out_proj)
def generate_rand_batch(
batch_size,
max_sequence_len,
embed_dimension,
pad_percentage=None,
dtype=torch.float16,
device="cuda",
):
if not pad_percentage:
return (
torch.randn(
batch_size,
max_sequence_len,
embed_dimension,
dtype=dtype,
device=device,
),
None,
)
# Really slow but should work
seq_len_list = [
int(max_sequence_len * (1 - random.gauss(pad_percentage, 0.01)))
for _ in range(batch_size)
]
# Make random ele max length
seq_len_list[random.randint(0, batch_size - 1)] = max_sequence_len
# print(f"Theoretical padding: {pad_percentage} actual: {1 - (sum(seq_len_list) / (batch_size * max_sequence_len))}")
return (
torch.nested.nested_tensor(
[
torch.randn(seq_len, embed_dimension, dtype=dtype, device=device)
for seq_len in seq_len_list
]
),
seq_len_list,
)
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
def assert_close_tensors(tensor_a, tensor_b):
# First order sanity check. Not a replacement for rigorous tests.
if tensor_a.is_nested and tensor_b.is_nested:
for a, b in zip(tensor_a.unbind(), tensor_b.unbind()):
assert torch.allclose(a, b, atol=1e-2, rtol=1e-2)
else:
assert torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
def run_single_experiment(config: ExperimentConfig) -> ExperimentResults:
with sdp_kernel(
enable_math=config.enable_math,
enable_flash=config.enable_flash,
enable_mem_efficient=config.enable_mem_efficient,
enable_cudnn=config.enable_cudnn,
):
dropout_p = 0.0
mask = None
nn_mha = torch.nn.MultiheadAttention(
embed_dim=config.embed_dimension,
num_heads=config.num_heads,
batch_first=True,
dropout=dropout_p,
)
nn_mha = nn_mha.eval().to("cuda", config.dtype)
composite_mha = build_composite_mha_from_nn_mha(nn_mha)
qkv, lengths = generate_rand_batch(
config.batch_size,
config.max_sequence_len,
config.embed_dimension,
config.pad_percentage,
config.dtype,
)
nn_mha_output, _ = nn_mha(qkv, qkv, qkv, mask)
composite_mha_output, _ = composite_mha(qkv, qkv, qkv, mask)
# First order sanity check
assert_close_tensors(nn_mha_output, composite_mha_output)
nn_mha_time = benchmark_torch_function_in_microseconds(
nn_mha, qkv, qkv, qkv, mask
)
composite_mha_time = benchmark_torch_function_in_microseconds(
composite_mha, qkv, qkv, qkv, mask
)
# TorchDynamo will error on NestedTensors
if config.pad_percentage is None:
compiled_nn_mha = torch.compile(nn_mha)
compiled_composite_mha = torch.compile(composite_mha)
compiled_nn_mha_time = benchmark_torch_function_in_microseconds(
compiled_nn_mha, qkv, qkv, qkv, mask
)
compiled_composite_mha_time = benchmark_torch_function_in_microseconds(
compiled_composite_mha,
qkv,
qkv,
qkv,
mask,
)
else:
compiled_nn_mha_time = None
compiled_composite_mha_time = None
results = ExperimentResults(
nn_mha_time,
compiled_nn_mha_time,
composite_mha_time,
compiled_composite_mha_time,
)
return Experiment(config, results)
# Could return generator
def generate_experiments(
batch_sizes, num_heads, max_seq_lens, embed_dims, dtypes, pad_percentages
) -> List[ExperimentConfig]:
configs = []
for bsz, n_heads, seq_len, embed_dim, dtype, padding in itertools.product(
batch_sizes, num_heads, max_seq_lens, embed_dims, dtypes, pad_percentages
):
configs.append(
ExperimentConfig(
batch_size=bsz,
num_heads=n_heads,
max_sequence_len=seq_len,
embed_dimension=embed_dim,
dtype=dtype,
pad_percentage=padding,
enable_math=False,
enable_flash=True,
enable_mem_efficient=True,
enable_cudnn=True,
)
)
return configs
def main(save_path: Optional[Path]):
seed = 123
np.random.seed(seed)
torch.manual_seed(seed)
# Run one timing experiment comparing nn_mha vs composite_mha
config = ExperimentConfig(
batch_size=128,
num_heads=8,
max_sequence_len=512,
embed_dimension=512,
dtype=torch.float16,
pad_percentage=None,
enable_math=False,
enable_flash=True,
enable_mem_efficient=True,
enable_cudnn=True,
)
experiment = run_single_experiment(config)
pprint(experiment)
table = PrettyTable()
table.float_format = ".3"
table.field_names = (
ExperimentConfig.get_entry_names() + ExperimentResults.get_entry_names()
)
# Run a bunch of experiments
batch_sizes = [256]
num_heads = [32]
max_seq_lens = [256]
embed_dims = [512]
dtypes = [torch.bfloat16, torch.float16, torch.float32]
pad_percentages = [None, 0.9]
experiment_configs = generate_experiments(
batch_sizes, num_heads, max_seq_lens, embed_dims, dtypes, pad_percentages
)
experiments: List[Experiment] = []
for experiment_config in tqdm(experiment_configs):
experiment = run_single_experiment(experiment_config)
experiments.append(experiment)
table.add_row(experiment.get_entries())
print(table)
csv_string = table.get_csv_string()
if save_path is not None:
with open(save_path, "w") as csvfile:
csvfile.write(csv_string)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save-path", "--save_path", type=str, help="Path to save the results"
)
args = parser.parse_args()
save_path = Path(args.save_path) if args.save_path else None
main(save_path)
|