1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
#pragma once
#include <cstdint>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <c10/core/OptionalRef.h>
#include <c10/core/ScalarType.h>
#include <c10/core/SymBool.h>
#include <c10/core/SymFloat.h>
#include <c10/core/SymInt.h>
#include <c10/core/SymNodeImpl.h>
#include <c10/macros/Export.h>
#include <c10/macros/Macros.h>
#include <c10/util/Deprecated.h>
#include <c10/util/Exception.h>
#include <c10/util/Half.h>
#include <c10/util/TypeCast.h>
#include <c10/util/complex.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/util/overflows.h>
namespace c10 {
/**
* Scalar represents a 0-dimensional tensor which contains a single element.
* Unlike a tensor, numeric literals (in C++) are implicitly convertible to
* Scalar (which is why, for example, we provide both add(Tensor) and
* add(Scalar) overloads for many operations). It may also be used in
* circumstances where you statically know a tensor is 0-dim and single size,
* but don't know its type.
*/
class C10_API Scalar {
public:
Scalar() : Scalar(int64_t(0)) {}
void destroy() {
if (Tag::HAS_si == tag || Tag::HAS_sd == tag || Tag::HAS_sb == tag) {
raw::intrusive_ptr::decref(v.p);
v.p = nullptr;
}
}
~Scalar() {
destroy();
}
#define DEFINE_IMPLICIT_CTOR(type, name) \
Scalar(type vv) : Scalar(vv, true) {}
AT_FORALL_SCALAR_TYPES_AND7(
Half,
BFloat16,
Float8_e5m2,
Float8_e4m3fn,
Float8_e5m2fnuz,
Float8_e4m3fnuz,
ComplexHalf,
DEFINE_IMPLICIT_CTOR)
AT_FORALL_COMPLEX_TYPES(DEFINE_IMPLICIT_CTOR)
// Helper constructors to allow Scalar creation from long and long long types
// As std::is_same_v<long, long long> is false(except Android), one needs to
// provide a constructor from either long or long long in addition to one from
// int64_t
#if defined(__APPLE__) || defined(__MACOSX)
static_assert(
std::is_same_v<long long, int64_t>,
"int64_t is the same as long long on MacOS");
Scalar(long vv) : Scalar(vv, true) {}
#endif
#if defined(_MSC_VER)
static_assert(
std::is_same_v<long long, int64_t>,
"int64_t is the same as long long on Windows");
Scalar(long vv) : Scalar(vv, true) {}
#endif
#if defined(__linux__) && !defined(__ANDROID__)
static_assert(
sizeof(void*) != 8 || std::is_same_v<long, int64_t>,
"int64_t is the same as long on 64 bit Linux");
#if LONG_MAX != INT_MAX
Scalar(long long vv) : Scalar(vv, true) {}
#endif /* not 32-bit system */
#endif
Scalar(uint16_t vv) : Scalar(vv, true) {}
Scalar(uint32_t vv) : Scalar(vv, true) {}
Scalar(uint64_t vv) {
if (vv > static_cast<uint64_t>(INT64_MAX)) {
tag = Tag::HAS_u;
v.u = vv;
} else {
tag = Tag::HAS_i;
// NB: no need to use convert, we've already tested convertibility
v.i = static_cast<int64_t>(vv);
}
}
#undef DEFINE_IMPLICIT_CTOR
// Value* is both implicitly convertible to SymbolicVariable and bool which
// causes ambiguity error. Specialized constructor for bool resolves this
// problem.
template <
typename T,
typename std::enable_if_t<std::is_same_v<T, bool>, bool>* = nullptr>
Scalar(T vv) : tag(Tag::HAS_b) {
v.i = convert<int64_t, bool>(vv);
}
template <
typename T,
typename std::enable_if_t<std::is_same_v<T, c10::SymBool>, bool>* =
nullptr>
Scalar(T vv) : tag(Tag::HAS_sb) {
v.i = convert<int64_t, c10::SymBool>(vv);
}
#define DEFINE_ACCESSOR(type, name) \
type to##name() const { \
if (Tag::HAS_d == tag) { \
return checked_convert<type, double>(v.d, #type); \
} else if (Tag::HAS_z == tag) { \
return checked_convert<type, c10::complex<double>>(v.z, #type); \
} else if (Tag::HAS_sd == tag) { \
return checked_convert<type, double>( \
toSymFloat().guard_float(__FILE__, __LINE__), #type); \
} \
if (Tag::HAS_b == tag) { \
return checked_convert<type, bool>(v.i, #type); \
} else if (Tag::HAS_i == tag) { \
return checked_convert<type, int64_t>(v.i, #type); \
} else if (Tag::HAS_u == tag) { \
return checked_convert<type, uint64_t>(v.u, #type); \
} else if (Tag::HAS_si == tag) { \
return checked_convert<type, int64_t>( \
toSymInt().guard_int(__FILE__, __LINE__), #type); \
} else if (Tag::HAS_sb == tag) { \
return checked_convert<type, int64_t>( \
toSymBool().guard_bool(__FILE__, __LINE__), #type); \
} \
TORCH_CHECK(false) \
}
// TODO: Support ComplexHalf accessor
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_ACCESSOR)
DEFINE_ACCESSOR(uint16_t, UInt16)
DEFINE_ACCESSOR(uint32_t, UInt32)
DEFINE_ACCESSOR(uint64_t, UInt64)
#undef DEFINE_ACCESSOR
SymInt toSymInt() const {
if (Tag::HAS_si == tag) {
return c10::SymInt(intrusive_ptr<SymNodeImpl>::reclaim_copy(
static_cast<SymNodeImpl*>(v.p)));
} else {
return toLong();
}
}
SymFloat toSymFloat() const {
if (Tag::HAS_sd == tag) {
return c10::SymFloat(intrusive_ptr<SymNodeImpl>::reclaim_copy(
static_cast<SymNodeImpl*>(v.p)));
} else {
return toDouble();
}
}
SymBool toSymBool() const {
if (Tag::HAS_sb == tag) {
return c10::SymBool(intrusive_ptr<SymNodeImpl>::reclaim_copy(
static_cast<SymNodeImpl*>(v.p)));
} else {
return toBool();
}
}
// also support scalar.to<int64_t>();
// Deleted for unsupported types, but specialized below for supported types
template <typename T>
T to() const = delete;
// audit uses of data_ptr
const void* data_ptr() const {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return static_cast<const void*>(&v);
}
bool isFloatingPoint() const {
return Tag::HAS_d == tag || Tag::HAS_sd == tag;
}
C10_DEPRECATED_MESSAGE(
"isIntegral is deprecated. Please use the overload with 'includeBool' parameter instead.")
bool isIntegral() const {
return Tag::HAS_i == tag || Tag::HAS_si == tag || Tag::HAS_u == tag;
}
bool isIntegral(bool includeBool) const {
return Tag::HAS_i == tag || Tag::HAS_si == tag || Tag::HAS_u == tag ||
(includeBool && isBoolean());
}
bool isComplex() const {
return Tag::HAS_z == tag;
}
bool isBoolean() const {
return Tag::HAS_b == tag || Tag::HAS_sb == tag;
}
// you probably don't actually want these; they're mostly for testing
bool isSymInt() const {
return Tag::HAS_si == tag;
}
bool isSymFloat() const {
return Tag::HAS_sd == tag;
}
bool isSymBool() const {
return Tag::HAS_sb == tag;
}
bool isSymbolic() const {
return Tag::HAS_si == tag || Tag::HAS_sd == tag || Tag::HAS_sb == tag;
}
C10_ALWAYS_INLINE Scalar& operator=(Scalar&& other) noexcept {
if (&other == this) {
return *this;
}
destroy();
moveFrom(std::move(other));
return *this;
}
C10_ALWAYS_INLINE Scalar& operator=(const Scalar& other) {
if (&other == this) {
return *this;
}
*this = Scalar(other);
return *this;
}
Scalar operator-() const;
Scalar conj() const;
Scalar log() const;
template <
typename T,
typename std::enable_if_t<!c10::is_complex<T>::value, int> = 0>
bool equal(T num) const {
if (isComplex()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
auto val = v.z;
return (val.real() == num) && (val.imag() == T());
} else if (isFloatingPoint()) {
return toDouble() == num;
} else if (tag == Tag::HAS_i) {
if (overflows<T>(v.i, /* strict_unsigned */ true)) {
return false;
} else {
return static_cast<T>(v.i) == num;
}
} else if (tag == Tag::HAS_u) {
if (overflows<T>(v.u, /* strict_unsigned */ true)) {
return false;
} else {
return static_cast<T>(v.u) == num;
}
} else if (tag == Tag::HAS_si) {
TORCH_INTERNAL_ASSERT(false, "NYI SymInt equality");
} else if (isBoolean()) {
// boolean scalar does not equal to a non boolean value
TORCH_INTERNAL_ASSERT(!isSymbolic());
return false;
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
template <
typename T,
typename std::enable_if_t<c10::is_complex<T>::value, int> = 0>
bool equal(T num) const {
if (isComplex()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return v.z == num;
} else if (isFloatingPoint()) {
return (toDouble() == num.real()) && (num.imag() == T());
} else if (tag == Tag::HAS_i) {
if (overflows<T>(v.i, /* strict_unsigned */ true)) {
return false;
} else {
return static_cast<T>(v.i) == num.real() && num.imag() == T();
}
} else if (tag == Tag::HAS_u) {
if (overflows<T>(v.u, /* strict_unsigned */ true)) {
return false;
} else {
return static_cast<T>(v.u) == num.real() && num.imag() == T();
}
} else if (tag == Tag::HAS_si) {
TORCH_INTERNAL_ASSERT(false, "NYI SymInt equality");
} else if (isBoolean()) {
// boolean scalar does not equal to a non boolean value
TORCH_INTERNAL_ASSERT(!isSymbolic());
return false;
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
bool equal(bool num) const {
if (isBoolean()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return static_cast<bool>(v.i) == num;
} else {
return false;
}
}
ScalarType type() const {
if (isComplex()) {
return ScalarType::ComplexDouble;
} else if (isFloatingPoint()) {
return ScalarType::Double;
} else if (isIntegral(/*includeBool=*/false)) {
// Represent all integers as long, UNLESS it is unsigned and therefore
// unrepresentable as long
if (Tag::HAS_u == tag) {
return ScalarType::UInt64;
}
return ScalarType::Long;
} else if (isBoolean()) {
return ScalarType::Bool;
} else {
throw std::runtime_error("Unknown scalar type.");
}
}
Scalar(Scalar&& rhs) noexcept : tag(rhs.tag) {
moveFrom(std::move(rhs));
}
Scalar(const Scalar& rhs) : tag(rhs.tag), v(rhs.v) {
if (isSymbolic()) {
c10::raw::intrusive_ptr::incref(v.p);
}
}
Scalar(c10::SymInt si) {
if (auto m = si.maybe_as_int()) {
tag = Tag::HAS_i;
v.i = *m;
} else {
tag = Tag::HAS_si;
v.p = std::move(si).release();
}
}
Scalar(c10::SymFloat sd) {
if (sd.is_symbolic()) {
tag = Tag::HAS_sd;
v.p = std::move(sd).release();
} else {
tag = Tag::HAS_d;
v.d = sd.as_float_unchecked();
}
}
Scalar(c10::SymBool sb) {
if (auto m = sb.maybe_as_bool()) {
tag = Tag::HAS_b;
v.i = *m;
} else {
tag = Tag::HAS_sb;
v.p = std::move(sb).release();
}
}
// We can't set v in the initializer list using the
// syntax v{ .member = ... } because it doesn't work on MSVC
private:
enum class Tag { HAS_d, HAS_i, HAS_u, HAS_z, HAS_b, HAS_sd, HAS_si, HAS_sb };
// Note [Meaning of HAS_u]
// ~~~~~~~~~~~~~~~~~~~~~~~
// HAS_u is a bit special. On its face, it just means that we
// are holding an unsigned integer. However, we generally don't
// distinguish between different bit sizes in Scalar (e.g., we represent
// float as double), instead, it represents a mathematical notion
// of some quantity (integral versus floating point). So actually,
// HAS_u is used solely to represent unsigned integers that could
// not be represented as a signed integer. That means only uint64_t
// potentially can get this tag; smaller types like uint8_t fits into a
// regular int and so for BC reasons we keep as an int.
// NB: assumes that self has already been cleared
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
C10_ALWAYS_INLINE void moveFrom(Scalar&& rhs) noexcept {
v = rhs.v;
tag = rhs.tag;
if (rhs.tag == Tag::HAS_si || rhs.tag == Tag::HAS_sd ||
rhs.tag == Tag::HAS_sb) {
// Move out of scalar
rhs.tag = Tag::HAS_i;
rhs.v.i = 0;
}
}
Tag tag;
union v_t {
double d{};
int64_t i;
// See Note [Meaning of HAS_u]
uint64_t u;
c10::complex<double> z;
c10::intrusive_ptr_target* p;
// NOLINTNEXTLINE(modernize-use-equals-default)
v_t() {} // default constructor
} v;
template <
typename T,
typename std::enable_if_t<
std::is_integral_v<T> && !std::is_same_v<T, bool>,
bool>* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_i) {
v.i = convert<decltype(v.i), T>(vv);
}
template <
typename T,
typename std::enable_if_t<
!std::is_integral_v<T> && !c10::is_complex<T>::value,
bool>* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_d) {
v.d = convert<decltype(v.d), T>(vv);
}
template <
typename T,
typename std::enable_if_t<c10::is_complex<T>::value, bool>* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_z) {
v.z = convert<decltype(v.z), T>(vv);
}
};
using OptionalScalarRef = c10::OptionalRef<Scalar>;
// define the scalar.to<int64_t>() specializations
#define DEFINE_TO(T, name) \
template <> \
inline T Scalar::to<T>() const { \
return to##name(); \
}
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_TO)
DEFINE_TO(uint16_t, UInt16)
DEFINE_TO(uint32_t, UInt32)
DEFINE_TO(uint64_t, UInt64)
#undef DEFINE_TO
} // namespace c10
|