1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
#pragma once
#include <c10/core/SymBool.h>
#include <c10/core/SymNodeImpl.h>
#include <c10/macros/Export.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/intrusive_ptr.h>
#include <cstdint>
#include <limits>
#include <ostream>
#include <utility>
namespace c10 {
// NB: this is actually double precision; we're using the Python naming here
class C10_API SymFloat {
public:
/*implicit*/ SymFloat(double d) : data_(d) {}
SymFloat(SymNode ptr)
: data_(std::numeric_limits<double>::quiet_NaN()), ptr_(std::move(ptr)) {
TORCH_CHECK(ptr_->is_float());
}
SymFloat() : data_(0.0) {}
SymNodeImpl* toSymNodeImplUnowned() const {
return ptr_.get();
}
SymNodeImpl* release() && {
return std::move(ptr_).release();
}
// Only valid if is_symbolic()
SymNode toSymNodeImpl() const;
// Guaranteed to return a SymNode, wrapping using base if necessary
SymNode wrap_node(const SymNode& base) const;
double expect_float() const {
TORCH_CHECK(!is_symbolic());
return data_;
}
SymFloat operator+(const SymFloat&) const;
SymFloat operator-(const SymFloat&) const;
SymFloat operator*(const SymFloat&) const;
SymFloat operator/(const SymFloat&) const;
SymBool sym_eq(const SymFloat&) const;
SymBool sym_ne(const SymFloat&) const;
SymBool sym_lt(const SymFloat&) const;
SymBool sym_le(const SymFloat&) const;
SymBool sym_gt(const SymFloat&) const;
SymBool sym_ge(const SymFloat&) const;
bool operator==(const SymFloat& o) const {
return sym_eq(o).guard_bool(__FILE__, __LINE__);
}
bool operator!=(const SymFloat& o) const {
return sym_ne(o).guard_bool(__FILE__, __LINE__);
}
bool operator<(const SymFloat& o) const {
return sym_lt(o).guard_bool(__FILE__, __LINE__);
}
bool operator<=(const SymFloat& o) const {
return sym_le(o).guard_bool(__FILE__, __LINE__);
}
bool operator>(const SymFloat& o) const {
return sym_gt(o).guard_bool(__FILE__, __LINE__);
}
bool operator>=(const SymFloat& o) const {
return sym_ge(o).guard_bool(__FILE__, __LINE__);
}
SymFloat min(const SymFloat& sci) const;
SymFloat max(const SymFloat& sci) const;
// Need guidance on where to put this code
SymFloat sqrt() const;
// Insert a guard for the float to be its concrete value, and then return
// that value. This operation always works, even if the float is symbolic,
// so long as we know what the underlying value is. Don't blindly put this
// everywhere; you can cause overspecialization of PyTorch programs with
// this method.
//
// It should be called as guard_float(__FILE__, __LINE__). The file and line
// number can be used to diagnose overspecialization.
double guard_float(const char* file, int64_t line) const;
bool has_hint() const;
// N.B. It's important to keep this definition in the header
// as we expect if checks to be folded for mobile builds
// where `is_symbolic` is always false
C10_ALWAYS_INLINE bool is_symbolic() const {
return ptr_;
}
// UNSAFELY coerce this SymFloat into a double. You MUST have
// established that this is a non-symbolic by some other means,
// typically by having tested is_symbolic(). You will get garbage
// from this function if is_symbolic()
double as_float_unchecked() const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!is_symbolic());
return data_;
}
private:
// TODO: optimize to union
double data_;
SymNode ptr_;
};
C10_API std::ostream& operator<<(std::ostream& os, const SymFloat& s);
} // namespace c10
|