1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
#include <c10/core/ConstantSymNodeImpl.h>
#include <c10/core/SymFloat.h>
#include <c10/core/SymInt.h>
#include <c10/core/SymNodeImpl.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/util/safe_numerics.h>
#include <functional>
namespace c10 {
// Precondition: data_ has a large negative number that should be
// treated as a constant. It is NOT a valid pointer. In other words,
// SymInt has temporarily violated invariants
// Postcondition: invariants on SymInt are fixed
void SymInt::promote_to_negative() {
auto s =
SymInt(SymNode(c10::make_intrusive<ConstantSymNodeImpl<int64_t>>(data_)));
// Similar to move operator=, but do NOT release data_
data_ = s.data_;
s.data_ = 0;
}
SymNode SymInt::toSymNode() const {
TORCH_CHECK_ALWAYS_SHOW_CPP_STACKTRACE(
is_heap_allocated(), "SymInt::toSymNode is_heap_allocated");
return SymNode::reclaim_copy(toSymNodeImplUnowned());
}
SymInt::SymInt(SymNode sin_sp) {
TORCH_CHECK_ALWAYS_SHOW_CPP_STACKTRACE(
sin_sp->is_int(), "SymInt::SymInt sin_sp->is_int()");
auto ptr = static_cast<uint64_t>(
reinterpret_cast<uintptr_t>(static_cast<void*>(sin_sp.release())));
auto rep = (ptr & ~MASK) | IS_SYM;
data_ = static_cast<int64_t>(rep);
}
bool SymInt::has_hint() const {
if (!is_heap_allocated()) {
return true;
}
return toSymNodeImplUnowned()->has_hint();
}
#define DEFINE_BINARY(API, OP, METHOD, RET) \
RET SymInt::API(const SymInt& sci) const { \
if (auto ma = maybe_as_int()) { \
if (auto mb = sci.maybe_as_int()) { \
return RET(OP(*ma, *mb)); \
} else { \
auto b = sci.toSymNode(); \
return RET(b->wrap_int(*ma)->METHOD(b)); \
} \
} else { \
if (auto mb = sci.maybe_as_int()) { \
auto a = toSymNodeImplUnowned(); \
return RET(a->METHOD(a->wrap_int(*mb))); \
} else { \
return RET(toSymNodeImplUnowned()->METHOD(sci.toSymNode())); \
} \
} \
}
DEFINE_BINARY(operator+, std::plus<>(), add, SymInt)
DEFINE_BINARY(operator-, std::minus<>(), sub, SymInt)
DEFINE_BINARY(operator*, std::multiplies<>(), mul, SymInt)
DEFINE_BINARY(operator/, std::divides<>(), floordiv, SymInt)
DEFINE_BINARY(operator%, std::modulus<>(), mod, SymInt)
DEFINE_BINARY(sym_eq, std::equal_to<>(), eq, SymBool)
DEFINE_BINARY(sym_ne, std::not_equal_to<>(), ne, SymBool)
DEFINE_BINARY(sym_lt, std::less<>(), lt, SymBool)
DEFINE_BINARY(sym_le, std::less_equal<>(), le, SymBool)
DEFINE_BINARY(sym_gt, std::greater<>(), gt, SymBool)
DEFINE_BINARY(sym_ge, std::greater_equal<>(), ge, SymBool)
DEFINE_BINARY(min, std::min, sym_min, SymInt)
DEFINE_BINARY(max, std::max, sym_max, SymInt)
SymInt::operator SymFloat() const {
if (auto ma = maybe_as_int()) {
return SymFloat(double(*ma));
} else {
return SymFloat(toSymNodeImplUnowned()->sym_float());
}
}
bool SymInt::is_same(const SymInt& other) const {
if (is_heap_allocated() != other.is_heap_allocated()) {
return false;
}
// Both not heap allocated
if (!is_heap_allocated() && this->operator!=(other)) {
return false;
}
// Both heap allocated
if (is_heap_allocated() &&
toSymNodeImplUnowned() != other.toSymNodeImplUnowned()) {
return false;
}
return true;
}
SymNode SymInt::wrap_node(const SymNode& base) const {
if (auto ma = maybe_as_int()) {
return base->wrap_int(*ma);
} else {
return toSymNode();
}
}
SymInt SymInt::clone() const {
if (auto ma = maybe_as_int()) {
return SymInt(*ma);
} else {
return SymInt(toSymNodeImplUnowned()->clone());
}
}
int64_t SymInt::guard_int(const char* file, int64_t line) const {
if (auto ma = maybe_as_int()) {
return *ma;
} else {
return toSymNodeImplUnowned()->guard_int(file, line);
}
}
bool SymInt::expect_size(const char* file, int64_t line) const {
if (auto ma = maybe_as_int()) {
return *ma >= 0;
} else {
return toSymNodeImplUnowned()->expect_size(file, line);
}
}
SymInt operator-(const SymInt& s) {
if (auto ma = s.maybe_as_int()) {
const auto val = *ma;
// Note: Result of `-std::numeric_limits<decltype(val)>::min()` is undefined
// But on many platforms it equals to self + setting Carry/Overflow flags
// Which in opimized code affects results of `check_range` condition
// Workaround by using ternary that avoids alterning the flags
#if C10_HAS_BUILTIN_OVERFLOW()
std::decay_t<decltype(val)> out = 0;
if (C10_UNLIKELY(__builtin_sub_overflow(out, val, &out))) {
return SymInt(val);
}
return SymInt(out);
#else
constexpr auto val_min = std::numeric_limits<decltype(val)>::min();
return SymInt(val != val_min ? -val : val_min);
#endif
} else {
return SymInt(s.toSymNodeImplUnowned()->neg());
}
}
void SymInt::operator*=(const SymInt& sci) {
*this = *this * sci;
}
void SymInt::operator/=(const SymInt& sci) {
*this = *this / sci;
}
void SymInt::operator+=(const SymInt& sci) {
*this = *this + sci;
}
std::ostream& operator<<(std::ostream& os, const SymInt& s) {
if (s.is_heap_allocated()) {
os << s.toSymNodeImplUnowned()->str();
} else {
os << s.as_int_unchecked();
}
return os;
}
// This template lets us not do a refcount bump when we do an
// identity conversion
template <typename T>
struct Convert {};
template <>
struct Convert<SymInt> {
const SymInt& operator()(const SymInt& a) {
return a;
}
};
template <>
struct Convert<SymFloat> {
SymFloat operator()(const SymInt& a) {
return a;
}
};
#define DEFINE_SYMINT_OP_INTONLY(scalar_t, RetTy) \
RetTy operator%(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) % RetTy(b); \
}; \
RetTy operator%(scalar_t a, const SymInt& b) { \
return RetTy(a) % Convert<RetTy>()(b); \
};
#define DEFINE_SYMINT_OP(scalar_t, RetTy) \
RetTy operator+(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) + RetTy(b); \
}; \
RetTy operator-(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) - RetTy(b); \
}; \
RetTy operator*(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) * RetTy(b); \
}; \
RetTy operator/(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) / RetTy(b); \
}; \
RetTy operator+(scalar_t a, const SymInt& b) { \
return RetTy(a) + Convert<RetTy>()(b); \
}; \
RetTy operator-(scalar_t a, const SymInt& b) { \
return RetTy(a) - Convert<RetTy>()(b); \
}; \
RetTy operator*(scalar_t a, const SymInt& b) { \
return RetTy(a) * Convert<RetTy>()(b); \
}; \
RetTy operator/(scalar_t a, const SymInt& b) { \
return RetTy(a) / Convert<RetTy>()(b); \
}; \
bool operator==(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) == RetTy(b); \
}; \
bool operator!=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) != RetTy(b); \
}; \
bool operator<(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) < RetTy(b); \
}; \
bool operator<=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) <= RetTy(b); \
}; \
bool operator>(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) > RetTy(b); \
}; \
bool operator>=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) >= RetTy(b); \
}; \
bool operator==(scalar_t a, const SymInt& b) { \
return RetTy(a) == Convert<RetTy>()(b); \
}; \
bool operator!=(scalar_t a, const SymInt& b) { \
return RetTy(a) != Convert<RetTy>()(b); \
}; \
bool operator<(scalar_t a, const SymInt& b) { \
return RetTy(a) < Convert<RetTy>()(b); \
}; \
bool operator<=(scalar_t a, const SymInt& b) { \
return RetTy(a) <= Convert<RetTy>()(b); \
}; \
bool operator>(scalar_t a, const SymInt& b) { \
return RetTy(a) > Convert<RetTy>()(b); \
}; \
bool operator>=(scalar_t a, const SymInt& b) { \
return RetTy(a) >= Convert<RetTy>()(b); \
};
DEFINE_SYMINT_OP_INTONLY(int64_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(int32_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(uint64_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(uint32_t, SymInt)
DEFINE_SYMINT_OP(int64_t, SymInt)
DEFINE_SYMINT_OP(int32_t, SymInt) // make sure constants work
DEFINE_SYMINT_OP(uint64_t, SymInt)
DEFINE_SYMINT_OP(uint32_t, SymInt)
DEFINE_SYMINT_OP(double, SymFloat)
DEFINE_SYMINT_OP(float, SymFloat) // just for completeness
#if defined(__APPLE__)
DEFINE_SYMINT_OP_INTONLY(size_t, SymInt) // needed for osx
DEFINE_SYMINT_OP(size_t, SymInt) // needed for osx
#endif
} // namespace c10
|