1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
#pragma once
#include <c10/core/SymBool.h>
#include <c10/core/SymNodeImpl.h>
#include <c10/macros/Export.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <optional>
#include <ostream>
#include <type_traits>
namespace c10 {
class SymFloat;
// SymInt represents either a regular int64_t, or a symbolic integer
// (represented in a type erased way as SymNode). The intention is for SymInt
// to represent symbolic sizes that arise when doing shape computation in
// operator kernels. This allows for tracing through programs without baking in
// concrete sizes into kernel calls.
//
// SymInt has an API equivalent to int64_t. In particular, it is a value type.
// Internally, SymInt is represented in a clever packed way, so that it only
// occupies one word of space; but morally, it is a union between an int64_t
// and an intrusive pointer to SymNodeImpl.
//
// Invariant: the referenced SymNodeImpl is guaranteed to be a SymNode where
// is_int() returns true
class C10_API SymInt {
public:
enum Unchecked {
UNCHECKED,
};
/*implicit*/ SymInt(int64_t d) : data_(d) {
if (is_heap_allocated()) {
// Large negative number, heap allocate it
promote_to_negative();
}
}
SymInt() : data_(0) {}
SymInt(SymNode n);
// unchecked c-tor accepting raw `data_`
// One appropriate use for this is when you are constructing a symint
// in a situation where you know it is non-negative (or, if it is negative,
// the negative value is -1; i.e., not user controlled)
SymInt(Unchecked, int64_t d) : data_(d) {}
// TODO: these implementations are not optimal because they allocate a
// temporary and then use the move constructor/assignment
SymInt(const SymInt& s) : data_(0) {
if (s.is_heap_allocated()) {
*this = SymInt(s.toSymNode());
} else {
data_ = s.data_;
}
}
SymInt(SymInt&& s) noexcept : data_(s.data_) {
s.data_ = 0;
}
SymInt& operator=(const SymInt& s) {
if (this != &s) {
if (s.is_heap_allocated()) {
*this = SymInt(s.toSymNode());
} else {
data_ = s.data_;
}
}
return *this;
}
SymInt& operator=(SymInt&& s) noexcept {
if (this != &s) {
release_(); // release the current SymNode if any
data_ = s.data_;
if (s.is_heap_allocated())
s.data_ = 0;
};
return *this;
}
SymNodeImpl* toSymNodeImplUnowned() const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(is_heap_allocated());
uint64_t unextended_bits = static_cast<uint64_t>(data_) & ~MASK;
uint64_t sign_bit_mask = 1ULL << (62 - 1);
// https://stackoverflow.com/questions/42534749/signed-extension-from-24-bit-to-32-bit-in-c
uint64_t extended_bits = (unextended_bits ^ sign_bit_mask) - sign_bit_mask;
return static_cast<SymNodeImpl*>(
// NOLINTNEXTLINE(performance-no-int-to-ptr, bugprone*)
reinterpret_cast<void*>(static_cast<uintptr_t>(extended_bits)));
}
void release_() {
if (is_heap_allocated()) {
SymNode::reclaim(toSymNodeImplUnowned()); // steal
}
}
SymNodeImpl* release() && {
#ifndef C10_MOBILE
TORCH_INTERNAL_ASSERT(is_heap_allocated());
auto* r = toSymNodeImplUnowned();
data_ = 0; // transfer ownership
return r;
#else
TORCH_INTERNAL_ASSERT(false);
#endif
}
// Only valid if is_heap_allocated()
SymNode toSymNode() const;
// Guaranteed to return a SymNode, wrapping using base if necessary
SymNode wrap_node(const SymNode& base) const;
~SymInt() {
release_();
}
// Require the int to be non-symbolic, and if it is symbolic raise an
// error. This is safe to use for C++ code that doesn't work for symbolic
// shapes, and you don't have time to fix it immediately, as if we
// try to trigger the path in C++ you'll appropriately get an error
int64_t expect_int() const {
if (auto r = maybe_as_int()) {
return *r;
}
TORCH_CHECK_ALWAYS_SHOW_CPP_STACKTRACE(
false, "when unpacking SymInt, expected int but got ", *this);
}
// Test if we have a hint for this int (e.g., guard_int would work).
// Most of the time this is true; it is only false when you have
// an unbacked SymInt.
bool has_hint() const;
// Insert a guard for the int to be its concrete value, and then return
// that value. This operation always works, even if the int is symbolic,
// so long as we know what the underlying value is (e.g., this won't work
// if you call it on the size of nonzero output). Don't blindly put this
// everywhere; you can cause overspecialization of PyTorch programs with
// this method.
//
// It should be called as guard_int(__FILE__, __LINE__). The file and line
// number can be used to diagnose overspecialization.
int64_t guard_int(const char* file, int64_t line) const;
// Insert a guard that this SymInt must be size-like, returning true if
// the integer actually is >= 0. Unlike manually performing a >= 0 test,
// if the SymInt in question is an unbacked SymInt (or, potentially in the
// future, if it contains unbacked SymInts), we will also treat the
// unbacked SymInt as statically testing >= 2 (which will prevent us from
// choking on, e.g., contiguity checks.)
bool expect_size(const char* file, int64_t line) const;
// Distinguish actual symbolic values from constants stored on the heap
bool is_symbolic() const {
return is_heap_allocated() &&
!toSymNodeImplUnowned()->constant_int().has_value();
}
// N.B. It's important to keep this definition in the header
// as we expect if checks to be folded for mobile builds
// where `is_heap_allocated` is always false and optimize dead code paths
C10_ALWAYS_INLINE bool is_heap_allocated() const {
#ifdef C10_MOBILE
return false;
#else
return !check_range(data_);
#endif
}
SymInt operator+(const SymInt& sci) const;
SymInt operator-(const SymInt& sci) const;
SymInt operator*(const SymInt& sci) const;
SymInt operator/(const SymInt& sci) const;
SymInt operator%(const SymInt& sci) const;
void operator*=(const SymInt& sci);
void operator+=(const SymInt& sci);
void operator/=(const SymInt& sci);
SymInt clone() const;
SymBool sym_eq(const SymInt&) const;
SymBool sym_ne(const SymInt&) const;
SymBool sym_lt(const SymInt&) const;
SymBool sym_le(const SymInt&) const;
SymBool sym_gt(const SymInt&) const;
SymBool sym_ge(const SymInt&) const;
bool operator==(const SymInt& o) const {
return sym_eq(o).guard_bool(__FILE__, __LINE__);
}
bool operator!=(const SymInt& o) const {
return sym_ne(o).guard_bool(__FILE__, __LINE__);
}
bool operator<(const SymInt& o) const {
return sym_lt(o).guard_bool(__FILE__, __LINE__);
}
bool operator<=(const SymInt& o) const {
return sym_le(o).guard_bool(__FILE__, __LINE__);
}
bool operator>(const SymInt& o) const {
return sym_gt(o).guard_bool(__FILE__, __LINE__);
}
bool operator>=(const SymInt& o) const {
return sym_ge(o).guard_bool(__FILE__, __LINE__);
}
SymInt min(const SymInt& sci) const;
SymInt max(const SymInt& sci) const;
// If both are symbolic, this checks if
// they share the same node.
// If both are not symbolic this just checks normal equality.
bool is_same(const SymInt& other) const;
operator SymFloat() const;
// Don't use this. Prefer maybe_as_int instead
int64_t as_int_unchecked() const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!is_heap_allocated());
return data_;
}
std::optional<int64_t> maybe_as_int() const {
if (!is_heap_allocated()) {
return data_;
}
auto* node = toSymNodeImplUnowned();
if (auto c = node->constant_int()) {
return c;
}
return node->maybe_as_int();
}
// Return whether the integer is directly coercible to a SymInt
// without requiring heap allocation. You don't need to use this
// to check if you can pass an integer to SymInt; this is guaranteed
// to work (it just might heap allocate!)
static bool check_range(int64_t i) {
return i > MAX_UNREPRESENTABLE_INT;
}
// Return the min representable integer as a SymInt without
// heap allocation. For quantities that count bytes (or larger),
// this is still much larger than you need, so you may consider
// using this as a more efficient version of MIN_INT
static constexpr int64_t min_representable_int() {
return MAX_UNREPRESENTABLE_INT + 1;
}
private:
void promote_to_negative();
// Constraints on the internal representation:
//
// - Should represent positive and small negative ints
// - No conversion necessary for operations on ints
// - Must represent valid 64-bit pointers
// - Is symbolic test should be FAST (two arithmetic instructions is too
// much).
// This code being a hotpath is based on Strobelight profiles of
// is_heap_allocated(). FB only: https://fburl.com/strobelight/5l50ncxd
// (you will need to change the time window).
//
// So, the scheme is to reserve large negative numbers (assuming
// two's complement):
//
// - 0b0.... means we are a positive int
// - 0b11... means we are a small negative int
// - 0b10... means we are are a pointer. This means that
// [-2^63, -2^62-1] are not representable as ints.
// We don't actually need all of this space as on x86_64
// as the top 16bits aren't used for anything
static constexpr uint64_t MASK = 1ULL << 63 | 1ULL << 62 | 1ULL << 61;
static constexpr uint64_t IS_SYM = 1ULL << 63 | 1ULL << 61;
// We must manually translate the bit pattern test into a greater
// than test because compiler doesn't figure it out:
// https://godbolt.org/z/356aferaW
static constexpr int64_t MAX_UNREPRESENTABLE_INT =
-1LL & static_cast<int64_t>(~(1ULL << 62));
int64_t data_;
};
/// Sum of a list of SymInt; accumulates into the c10::SymInt expression
template <
typename C,
typename std::enable_if_t<
std::is_same_v<typename C::value_type, c10::SymInt>,
int> = 0>
inline c10::SymInt multiply_integers(const C& container) {
return std::accumulate(
container.begin(),
container.end(),
c10::SymInt(1),
[](const c10::SymInt& a, const c10::SymInt& b) { return a * b; });
}
template <
typename Iter,
typename = std::enable_if_t<std::is_same_v<
typename std::iterator_traits<Iter>::value_type,
c10::SymInt>>>
inline c10::SymInt multiply_integers(Iter begin, Iter end) {
return std::accumulate(
begin,
end,
c10::SymInt(1),
[](const c10::SymInt& a, const c10::SymInt& b) { return a * b; });
}
#define DECLARE_SYMINT_OP_INTONLY(scalar_t, RetTy) \
C10_API RetTy operator%(const SymInt& a, scalar_t b); \
C10_API RetTy operator%(scalar_t a, const SymInt& b);
#define DECLARE_SYMINT_OP(scalar_t, RetTy) \
C10_API RetTy operator+(const SymInt& a, scalar_t b); \
C10_API RetTy operator-(const SymInt& a, scalar_t b); \
C10_API RetTy operator*(const SymInt& a, scalar_t b); \
C10_API RetTy operator/(const SymInt& a, scalar_t b); \
C10_API RetTy operator+(scalar_t a, const SymInt& b); \
C10_API RetTy operator-(scalar_t a, const SymInt& b); \
C10_API RetTy operator*(scalar_t a, const SymInt& b); \
C10_API RetTy operator/(scalar_t a, const SymInt& b); \
C10_API bool operator==(const SymInt& a, scalar_t b); \
C10_API bool operator!=(const SymInt& a, scalar_t b); \
C10_API bool operator<(const SymInt& a, scalar_t b); \
C10_API bool operator<=(const SymInt& a, scalar_t b); \
C10_API bool operator>(const SymInt& a, scalar_t b); \
C10_API bool operator>=(const SymInt& a, scalar_t b); \
C10_API bool operator==(scalar_t a, const SymInt& b); \
C10_API bool operator!=(scalar_t a, const SymInt& b); \
C10_API bool operator<(scalar_t a, const SymInt& b); \
C10_API bool operator<=(scalar_t a, const SymInt& b); \
C10_API bool operator>(scalar_t a, const SymInt& b); \
C10_API bool operator>=(scalar_t a, const SymInt& b);
DECLARE_SYMINT_OP_INTONLY(int64_t, SymInt)
DECLARE_SYMINT_OP_INTONLY(int32_t, SymInt)
DECLARE_SYMINT_OP_INTONLY(uint64_t, SymInt)
DECLARE_SYMINT_OP_INTONLY(uint32_t, SymInt)
DECLARE_SYMINT_OP(int64_t, SymInt)
DECLARE_SYMINT_OP(int32_t, SymInt) // make sure constants work
DECLARE_SYMINT_OP(uint64_t, SymInt)
DECLARE_SYMINT_OP(uint32_t, SymInt)
DECLARE_SYMINT_OP(double, SymFloat)
DECLARE_SYMINT_OP(float, SymFloat) // just for completeness
// On OSX size_t is different than uint64_t so we have to
// define it separately
#if defined(__APPLE__)
DECLARE_SYMINT_OP_INTONLY(size_t, SymInt)
DECLARE_SYMINT_OP(size_t, SymInt)
#endif
#undef DECLARE_SYMINT_OP
C10_API std::ostream& operator<<(std::ostream& os, const SymInt& s);
C10_API SymInt operator-(const SymInt& s);
inline bool sym_eq(int64_t a, int64_t b) {
return a == b;
}
inline SymBool sym_eq(const SymInt& a, const SymInt& b) {
return a.sym_eq(b);
}
inline bool sym_ne(int64_t a, int64_t b) {
return a != b;
}
inline SymBool sym_ne(const SymInt& a, const SymInt& b) {
return a.sym_ne(b);
}
inline bool sym_lt(int64_t a, int64_t b) {
return a < b;
}
inline SymBool sym_lt(const SymInt& a, const SymInt& b) {
return a.sym_lt(b);
}
inline bool sym_le(int64_t a, int64_t b) {
return a <= b;
}
inline SymBool sym_le(const SymInt& a, const SymInt& b) {
return a.sym_le(b);
}
inline bool sym_gt(int64_t a, int64_t b) {
return a > b;
}
inline SymBool sym_gt(const SymInt& a, const SymInt& b) {
return a.sym_gt(b);
}
inline bool sym_ge(int64_t a, int64_t b) {
return a >= b;
}
inline SymBool sym_ge(const SymInt& a, const SymInt& b) {
return a.sym_ge(b);
}
inline bool definitely_true(
const c10::SymBool& b,
const char* file,
int64_t line) {
return b.has_hint() && b.guard_bool(file, line);
}
} // namespace c10
|