1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
#include <c10/core/Contiguity.h>
#include <c10/core/MemoryFormat.h>
#include <c10/core/SymInt.h>
#include <c10/core/SymIntArrayRef.h>
#include <c10/core/SymbolicShapeMeta.h>
namespace c10 {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
SymbolicShapeMeta::SymbolicShapeMeta(const SymbolicShapeMeta& other)
// Non-mutables can be accessed outside the mutex
: sizes_(other.sizes_),
strides_(other.strides_),
storage_offset_(other.storage_offset_),
strides_valid_(other.strides_valid_) {
std::scoped_lock lock(other.mutables_);
// These must be copied under lock, so ignore clang-tidy here!
// NOLINTBEGIN(cppcoreguidelines-prefer-member-initializer)
numel_ = other.numel_;
is_contiguous_ = other.is_contiguous_;
is_channels_last_contiguous_ = other.is_channels_last_contiguous_;
is_channels_last_3d_contiguous_ = other.is_channels_last_3d_contiguous_;
is_channels_last_ = other.is_channels_last_;
is_channels_last_3d_ = other.is_channels_last_3d_;
is_non_overlapping_and_dense_ = other.is_non_overlapping_and_dense_;
available_.store(other.available_.load());
// NOLINTEND(cppcoreguidelines-prefer-member-initializer)
}
// base, sizes, strides
static std::optional<
std::tuple<SymNode, std::vector<SymNode>, std::vector<SymNode>>>
normalize_sym_sizes_strides(SymIntArrayRef sizes, SymIntArrayRef strides) {
// Look for a SymNode to dispatch on
SymNode base;
bool all_hinted = true;
// NB: sizes/strides guaranteed to be positive, so only need
// is_heap_allocated
for (const auto& s : sizes) {
if (all_hinted && !s.has_hint()) {
all_hinted = false;
}
if (!base && s.is_heap_allocated()) {
base = s.toSymNode();
}
}
for (const auto& s : strides) {
if (all_hinted && !s.has_hint()) {
all_hinted = false;
}
if (!base && s.is_heap_allocated()) {
base = s.toSymNode();
}
}
if (!base || all_hinted) {
// Couldn't find. Tell the caller to do the normal computation
// Alternately, if everything is hinted, we want the normal computation
// too
return std::nullopt;
}
// Populate the SymNode array
std::vector<SymNode> size_nodes;
std::vector<SymNode> stride_nodes;
size_nodes.reserve(sizes.size());
stride_nodes.reserve(strides.size());
for (const auto& s : sizes) {
size_nodes.emplace_back(s.wrap_node(base));
}
for (const auto& s : strides) {
stride_nodes.emplace_back(s.wrap_node(base));
}
return std::tuple<SymNode, std::vector<SymNode>, std::vector<SymNode>>(
std::move(base), std::move(size_nodes), std::move(stride_nodes));
}
// Special treatment because of numel
SymBool SymbolicShapeMeta::compute_contiguous() const {
if (!strides_valid_) {
return false;
}
c10::SymIntArrayRef sizes(sizes_);
c10::SymIntArrayRef strides(strides_);
return _compute_contiguous(sizes, strides, numel());
}
// The rest of them
#define DEFINE_EAGER_SYMBOOL_COMPUTE(name, nodeimpl, fallback) \
SymBool SymbolicShapeMeta::name() const { \
if (!strides_valid_) { \
return false; \
} \
c10::SymIntArrayRef sizes(sizes_); \
c10::SymIntArrayRef strides(strides_); \
return fallback(sizes, strides); \
}
#define DEFINE_SYMBOOL_COMPUTE(name, nodeimpl, fallback) \
SymBool SymbolicShapeMeta::name() const { \
if (!strides_valid_) { \
return false; \
} \
auto n = normalize_sym_sizes_strides(sizes_, strides_); \
if (n.has_value()) { \
auto [base, size_nodes, stride_nodes] = *n; \
return SymBool(base->nodeimpl(size_nodes, stride_nodes)); \
} else { \
c10::SymIntArrayRef sizes(sizes_); \
c10::SymIntArrayRef strides(strides_); \
return fallback(sizes, strides); \
} \
}
// clang-format off
DEFINE_EAGER_SYMBOOL_COMPUTE(compute_channels_last_contiguous_2d, is_channels_last_contiguous_2d, _compute_channels_last_contiguous_2d)
DEFINE_EAGER_SYMBOOL_COMPUTE(compute_channels_last_contiguous_3d, is_channels_last_contiguous_3d, _compute_channels_last_contiguous_3d)
DEFINE_EAGER_SYMBOOL_COMPUTE(compute_strides_like_channels_last_2d, is_channels_last_strides_2d, is_channels_last_strides_2d)
DEFINE_EAGER_SYMBOOL_COMPUTE(compute_strides_like_channels_last_3d, is_channels_last_strides_3d, is_channels_last_strides_3d)
DEFINE_SYMBOOL_COMPUTE(compute_non_overlapping_and_dense, is_non_overlapping_and_dense, _compute_non_overlapping_and_dense)
// clang-format on
#undef DEFINE_SYMBOOL_COMPUTE
// Glue compute
// NB: this logic very intentionally short circuits if possible. Without
// short circuiting, it causes
// python test/functorch/test_aotdispatch.py -k
// test_aot_autograd_symbolic_exhaustive_nn_functional_unfold_cpu_float32 to run
// very slowly.
SymBool SymbolicShapeMeta::compute_is_non_overlapping_and_dense_dim4() const {
init_is_contiguous();
if (definitely_true(is_contiguous(), __FILE__, __LINE__)) {
return true;
}
init_is_channels_last_contiguous();
if (definitely_true(is_channels_last_contiguous(), __FILE__, __LINE__)) {
return true;
}
return is_contiguous() | is_channels_last_contiguous() |
compute_non_overlapping_and_dense();
}
SymBool SymbolicShapeMeta::compute_channels_last_contiguous_3d_dim5() const {
init_is_channels_last_contiguous();
if (definitely_true(is_channels_last_contiguous(), __FILE__, __LINE__)) {
return false;
}
return ~is_channels_last_contiguous() & compute_channels_last_contiguous_3d();
}
SymBool SymbolicShapeMeta::compute_channels_last_2d_dim5() const {
init_is_channels_last_3d_contiguous();
if (definitely_true(is_channels_last_3d_contiguous(), __FILE__, __LINE__)) {
return false;
}
return ~is_channels_last_3d_contiguous() &
compute_strides_like_channels_last_2d();
}
SymBool SymbolicShapeMeta::compute_channels_last_3d_dim5() const {
if (definitely_true(is_channels_last(), __FILE__, __LINE__)) {
return false;
}
return ~is_channels_last() & compute_strides_like_channels_last_3d();
}
SymBool SymbolicShapeMeta::compute_is_non_overlapping_and_dense_dim5() const {
if (definitely_true(is_contiguous(), __FILE__, __LINE__)) {
return true;
}
if (definitely_true(is_channels_last_contiguous(), __FILE__, __LINE__)) {
return true;
}
if (definitely_true(is_channels_last_3d_contiguous(), __FILE__, __LINE__)) {
return true;
}
return is_contiguous() | is_channels_last_contiguous() |
is_channels_last_3d_contiguous() | compute_non_overlapping_and_dense();
}
SymBool SymbolicShapeMeta::compute_is_non_overlapping_and_dense_anydim() const {
if (definitely_true(is_contiguous(), __FILE__, __LINE__)) {
return true;
}
return is_contiguous() | compute_non_overlapping_and_dense();
}
void SymbolicShapeMeta::set_numel(SymInt val) const {
std::scoped_lock lock(mutables_);
if (has_numel()) {
return;
}
numel_ = std::move(val);
available_.fetch_or(numel_avail);
}
void SymbolicShapeMeta::set_is_contiguous(SymBool val) const {
std::scoped_lock lock(mutables_);
if (has_is_contiguous()) {
return;
}
is_contiguous_ = std::move(val);
available_.fetch_or(is_contiguous_avail);
}
void SymbolicShapeMeta::set_is_channels_last_contiguous(SymBool val) const {
std::scoped_lock lock(mutables_);
if (has_is_channels_last_contiguous()) {
return;
}
is_channels_last_contiguous_ = std::move(val);
available_.fetch_or(is_channels_last_contiguous_avail);
}
void SymbolicShapeMeta::set_is_channels_last_3d_contiguous(SymBool val) const {
std::scoped_lock lock(mutables_);
if (has_is_channels_last_3d_contiguous()) {
return;
}
is_channels_last_3d_contiguous_ = std::move(val);
available_.fetch_or(is_channels_last_3d_contiguous_avail);
}
void SymbolicShapeMeta::set_is_channels_last(SymBool val) const {
std::scoped_lock lock(mutables_);
if (has_is_channels_last()) {
return;
}
is_channels_last_ = std::move(val);
available_.fetch_or(is_channels_last_avail);
}
void SymbolicShapeMeta::set_is_channels_last_3d(SymBool val) const {
std::scoped_lock lock(mutables_);
if (has_is_channels_last_3d()) {
return;
}
is_channels_last_3d_ = std::move(val);
available_.fetch_or(is_channels_last_3d_avail);
}
void SymbolicShapeMeta::set_is_non_overlapping_and_dense(SymBool val) const {
std::scoped_lock lock(mutables_);
if (has_is_non_overlapping_and_dense()) {
return;
}
is_non_overlapping_and_dense_ = std::move(val);
available_.fetch_or(is_non_overlapping_and_dense_avail);
}
void SymbolicShapeMeta::init_numel() const {
set_numel(multiply_integers(sizes_));
}
void SymbolicShapeMeta::init_is_contiguous() const {
set_is_contiguous(compute_contiguous());
}
void SymbolicShapeMeta::init_is_channels_last_contiguous() const {
set_is_channels_last_contiguous([&] {
switch (dim()) {
case 5:
case 4: {
return compute_channels_last_contiguous_2d();
}
default:
return SymBool{false};
}
}());
}
void SymbolicShapeMeta::init_is_channels_last_3d_contiguous() const {
set_is_channels_last_3d_contiguous([&] {
switch (dim()) {
case 5:
return compute_channels_last_contiguous_3d_dim5();
default:
return SymBool{false};
}
}());
}
void SymbolicShapeMeta::init_is_channels_last() const {
set_is_channels_last([&] {
switch (dim()) {
case 5:
return compute_channels_last_2d_dim5();
case 4:
return compute_strides_like_channels_last_2d();
default:
return SymBool{false};
}
}());
}
void SymbolicShapeMeta::init_is_channels_last_3d() const {
set_is_channels_last_3d([&] {
switch (dim()) {
case 5:
return compute_channels_last_3d_dim5();
default:
return SymBool{false};
}
}());
}
void SymbolicShapeMeta::init_is_non_overlapping_and_dense() const {
set_is_non_overlapping_and_dense([&] {
switch (dim()) {
case 5:
return compute_is_non_overlapping_and_dense_dim5();
case 4:
return compute_is_non_overlapping_and_dense_dim4();
default:
return compute_is_non_overlapping_and_dense_anydim();
}
}());
}
} // namespace c10
|