1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#include <c10/core/impl/alloc_cpu.h>
#include <c10/core/alignment.h>
#include <c10/util/Flags.h>
#include <c10/util/Logging.h>
#include <c10/util/env.h>
#include <c10/util/error.h>
#include <c10/util/irange.h>
#include <c10/util/numa.h>
#ifdef USE_MIMALLOC
#include <mimalloc.h>
#endif
#ifdef __linux__
#include <sys/mman.h>
#include <unistd.h>
#endif
// TODO: rename flags to C10
C10_DEFINE_bool(
caffe2_cpu_allocator_do_zero_fill,
false,
"If set, do memory zerofilling when allocating on CPU");
C10_DEFINE_bool(
caffe2_cpu_allocator_do_junk_fill,
false,
"If set, fill memory with deterministic junk when allocating on CPU");
namespace c10 {
namespace {
// Fill the data memory region of num bytes with a particular garbage pattern.
// The garbage value is chosen to be NaN if interpreted as floating point value,
// or a very large integer.
void memset_junk(void* data, size_t num) {
// This garbage pattern is NaN when interpreted as floating point values,
// or as very large integer values.
static constexpr int32_t kJunkPattern = 0x7fedbeef;
static constexpr int64_t kJunkPattern64 =
static_cast<int64_t>(kJunkPattern) << 32 | kJunkPattern;
auto int64_count = num / sizeof(kJunkPattern64);
auto remaining_bytes = num % sizeof(kJunkPattern64);
int64_t* data_i64 = reinterpret_cast<int64_t*>(data);
for (const auto i : c10::irange(int64_count)) {
data_i64[i] = kJunkPattern64;
}
if (remaining_bytes > 0) {
memcpy(data_i64 + int64_count, &kJunkPattern64, remaining_bytes);
}
}
#if defined(__linux__) && !defined(__ANDROID__)
static inline bool is_thp_alloc_enabled() {
static bool value = [&] {
auto env = c10::utils::check_env("THP_MEM_ALLOC_ENABLE");
return env.has_value() ? env.value() : 0;
}();
return value;
}
inline size_t c10_compute_alignment(size_t nbytes) {
static const auto pagesize = sysconf(_SC_PAGESIZE);
// for kernels that don't provide page size, default it to 4K
const size_t thp_alignment = (pagesize < 0 ? gPagesize : pagesize);
return (is_thp_alloc_enabled() ? thp_alignment : gAlignment);
}
inline bool is_thp_alloc(size_t nbytes) {
// enable thp (transparent huge pages) for larger buffers
return (is_thp_alloc_enabled() && (nbytes >= gAlloc_threshold_thp));
}
#elif !defined(__ANDROID__) && !defined(_MSC_VER)
constexpr size_t c10_compute_alignment([[maybe_unused]] size_t nbytes) {
return gAlignment;
}
constexpr bool is_thp_alloc([[maybe_unused]] size_t nbytes) {
return false;
}
#endif
} // namespace
void* alloc_cpu(size_t nbytes) {
if (nbytes == 0) {
return nullptr;
}
// We might have clowny upstream code that tries to alloc a negative number
// of bytes. Let's catch it early.
CAFFE_ENFORCE(
((ptrdiff_t)nbytes) >= 0,
"alloc_cpu() seems to have been called with negative number: ",
nbytes);
void* data = nullptr;
#ifdef __ANDROID__
data = memalign(gAlignment, nbytes);
CAFFE_ENFORCE(
data,
"DefaultCPUAllocator: not enough memory: you tried to allocate ",
nbytes,
" bytes.");
#elif defined(_MSC_VER)
#ifdef USE_MIMALLOC
data = mi_malloc_aligned(nbytes, gAlignment);
#else
data = _aligned_malloc(nbytes, gAlignment);
#endif
CAFFE_ENFORCE(
data,
"DefaultCPUAllocator: not enough memory: you tried to allocate ",
nbytes,
" bytes.");
#else
int err = posix_memalign(&data, c10_compute_alignment(nbytes), nbytes);
CAFFE_ENFORCE(
err == 0,
"DefaultCPUAllocator: can't allocate memory: you tried to allocate ",
nbytes,
" bytes. Error code ",
err,
" (",
c10::utils::str_error(err),
")");
if (is_thp_alloc(nbytes)) {
#ifdef __linux__
// MADV_HUGEPAGE advise is available only for linux.
// general posix compliant systems can check POSIX_MADV_SEQUENTIAL advise.
int ret = madvise(data, nbytes, MADV_HUGEPAGE);
if (ret != 0) {
TORCH_WARN_ONCE(
"thp madvise for HUGEPAGE failed with ",
c10::utils::str_error(errno));
}
#endif
}
#endif
// move data to a thread's NUMA node
NUMAMove(data, nbytes, GetCurrentNUMANode());
CHECK(
!FLAGS_caffe2_cpu_allocator_do_zero_fill ||
!FLAGS_caffe2_cpu_allocator_do_junk_fill)
<< "Cannot request both zero-fill and junk-fill at the same time";
if (FLAGS_caffe2_cpu_allocator_do_zero_fill) {
memset(data, 0, nbytes);
} else if (FLAGS_caffe2_cpu_allocator_do_junk_fill) {
memset_junk(data, nbytes);
}
return data;
}
void free_cpu(void* data) {
#ifdef _MSC_VER
#ifdef USE_MIMALLOC
mi_free(data);
#else
_aligned_free(data);
#endif
#else
// NOLINTNEXTLINE(cppcoreguidelines-no-malloc)
free(data);
#endif
}
#ifdef USE_MIMALLOC_ON_MKL
namespace mi_malloc_wrapper {
void* c10_mi_malloc(size_t size) {
return mi_malloc(size);
}
void* c10_mi_calloc(size_t count, size_t size) {
return mi_calloc(count, size);
}
void* c10_mi_realloc(void* p, size_t newsize) {
return mi_realloc(p, newsize);
}
void* c10_mi_malloc_aligned(size_t size, size_t alignment) {
return mi_malloc_aligned(size, alignment);
}
void c10_mi_free(void* p) {
mi_free(p);
}
} // namespace mi_malloc_wrapper
#endif
} // namespace c10
|