1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
#include <c10/cuda/CUDAAllocatorConfig.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/util/llvmMathExtras.h>
#if !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
#include <c10/cuda/driver_api.h>
#endif
namespace c10::cuda::CUDACachingAllocator {
constexpr size_t kRoundUpPowerOfTwoIntervals = 16;
CUDAAllocatorConfig::CUDAAllocatorConfig()
: m_max_split_size(std::numeric_limits<size_t>::max()),
m_max_non_split_rounding_size(kLargeBuffer),
m_garbage_collection_threshold(0),
m_pinned_num_register_threads(1),
m_expandable_segments(false),
m_release_lock_on_cudamalloc(false),
m_pinned_use_cuda_host_register(false),
m_pinned_use_background_threads(false),
m_last_allocator_settings("") {
m_roundup_power2_divisions.assign(kRoundUpPowerOfTwoIntervals, 0);
}
size_t CUDAAllocatorConfig::roundup_power2_divisions(size_t size) {
size_t log_size = (63 - llvm::countLeadingZeros(size));
// Our intervals start at 1MB and end at 64GB
const size_t interval_start =
63 - llvm::countLeadingZeros(static_cast<size_t>(1048576));
const size_t interval_end =
63 - llvm::countLeadingZeros(static_cast<size_t>(68719476736));
TORCH_CHECK(
(interval_end - interval_start == kRoundUpPowerOfTwoIntervals),
"kRoundUpPowerOfTwoIntervals mismatch");
int index = static_cast<int>(log_size) - static_cast<int>(interval_start);
index = std::max(0, index);
index = std::min(index, static_cast<int>(kRoundUpPowerOfTwoIntervals) - 1);
return instance().m_roundup_power2_divisions[index];
}
void CUDAAllocatorConfig::lexArgs(
const char* env,
std::vector<std::string>& config) {
std::vector<char> buf;
size_t env_length = strlen(env);
for (size_t i = 0; i < env_length; i++) {
if (env[i] == ',' || env[i] == ':' || env[i] == '[' || env[i] == ']') {
if (!buf.empty()) {
config.emplace_back(buf.begin(), buf.end());
buf.clear();
}
config.emplace_back(1, env[i]);
} else if (env[i] != ' ') {
buf.emplace_back(static_cast<char>(env[i]));
}
}
if (!buf.empty()) {
config.emplace_back(buf.begin(), buf.end());
}
}
void CUDAAllocatorConfig::consumeToken(
const std::vector<std::string>& config,
size_t i,
const char c) {
TORCH_CHECK(
i < config.size() && config[i] == std::string(1, c),
"Error parsing CachingAllocator settings, expected ",
c,
"");
}
size_t CUDAAllocatorConfig::parseMaxSplitSize(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
constexpr int mb = 1024 * 1024;
if (++i < config.size()) {
size_t val1 = stoi(config[i]);
TORCH_CHECK(
val1 > kLargeBuffer / mb,
"CachingAllocator option max_split_size_mb too small, must be > ",
kLargeBuffer / mb,
"");
val1 = std::max(val1, kLargeBuffer / mb);
val1 = std::min(val1, (std::numeric_limits<size_t>::max() / mb));
m_max_split_size = val1 * 1024 * 1024;
} else {
TORCH_CHECK(false, "Error, expecting max_split_size_mb value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseMaxNonSplitRoundingSize(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
constexpr int mb = 1024 * 1024;
if (++i < config.size()) {
size_t val1 = stoi(config[i]);
TORCH_CHECK(
val1 > kLargeBuffer / mb,
"CachingAllocator option max_non_split_rounding_mb too small, must be > ",
kLargeBuffer / mb,
"");
val1 = std::max(val1, kLargeBuffer / mb);
val1 = std::min(val1, (std::numeric_limits<size_t>::max() / mb));
m_max_non_split_rounding_size = val1 * 1024 * 1024;
} else {
TORCH_CHECK(false, "Error, expecting max_non_split_rounding_mb value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseGarbageCollectionThreshold(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
double val1 = stod(config[i]);
TORCH_CHECK(
val1 > 0, "garbage_collect_threshold too small, set it 0.0~1.0", "");
TORCH_CHECK(
val1 < 1.0, "garbage_collect_threshold too big, set it 0.0~1.0", "");
m_garbage_collection_threshold = val1;
} else {
TORCH_CHECK(
false, "Error, expecting garbage_collection_threshold value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseRoundUpPower2Divisions(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
bool first_value = true;
if (++i < config.size()) {
if (std::string_view(config[i]) == "[") {
size_t last_index = 0;
while (++i < config.size() && std::string_view(config[i]) != "]") {
const std::string& val1 = config[i];
size_t val2 = 0;
consumeToken(config, ++i, ':');
if (++i < config.size()) {
val2 = stoi(config[i]);
} else {
TORCH_CHECK(
false, "Error parsing roundup_power2_divisions value", "");
}
TORCH_CHECK(
val2 == 0 || llvm::isPowerOf2_64(val2),
"For roundups, the divisons has to be power of 2 or 0 to disable roundup ",
"");
if (std::string_view(val1) == ">") {
std::fill(
std::next(
m_roundup_power2_divisions.begin(),
static_cast<std::vector<unsigned long>::difference_type>(
last_index)),
m_roundup_power2_divisions.end(),
val2);
} else {
size_t val1_long = stoul(val1);
TORCH_CHECK(
llvm::isPowerOf2_64(val1_long),
"For roundups, the intervals have to be power of 2 ",
"");
size_t index = 63 - llvm::countLeadingZeros(val1_long);
index = std::max((size_t)0, index);
index = std::min(index, m_roundup_power2_divisions.size() - 1);
if (first_value) {
std::fill(
m_roundup_power2_divisions.begin(),
std::next(
m_roundup_power2_divisions.begin(),
static_cast<std::vector<unsigned long>::difference_type>(
index)),
val2);
first_value = false;
}
if (index < m_roundup_power2_divisions.size()) {
m_roundup_power2_divisions[index] = val2;
}
last_index = index;
}
if (std::string_view(config[i + 1]) != "]") {
consumeToken(config, ++i, ',');
}
}
} else { // Keep this for backwards compatibility
size_t val1 = stoi(config[i]);
TORCH_CHECK(
llvm::isPowerOf2_64(val1),
"For roundups, the divisons has to be power of 2 ",
"");
std::fill(
m_roundup_power2_divisions.begin(),
m_roundup_power2_divisions.end(),
val1);
}
} else {
TORCH_CHECK(false, "Error, expecting roundup_power2_divisions value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseAllocatorConfig(
const std::vector<std::string>& config,
size_t i,
bool& used_cudaMallocAsync) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(
((config[i] == "native") || (config[i] == "cudaMallocAsync")),
"Unknown allocator backend, "
"options are native and cudaMallocAsync");
used_cudaMallocAsync = (config[i] == "cudaMallocAsync");
#ifndef USE_ROCM
// HIP supports hipMallocAsync and does not need to check versions
if (used_cudaMallocAsync) {
#if CUDA_VERSION >= 11040
int version = 0;
C10_CUDA_CHECK(cudaDriverGetVersion(&version));
TORCH_CHECK(
version >= 11040,
"backend:cudaMallocAsync requires CUDA runtime "
"11.4 or newer, but cudaDriverGetVersion returned ",
version);
#else
TORCH_CHECK(
false,
"backend:cudaMallocAsync requires PyTorch to be built with "
"CUDA 11.4 or newer, but CUDA_VERSION is ",
CUDA_VERSION);
#endif
}
#endif
TORCH_INTERNAL_ASSERT(
config[i] == get()->name(),
"Allocator backend parsed at runtime != "
"allocator backend parsed at load time");
} else {
TORCH_CHECK(false, "Error parsing backend value", "");
}
return i;
}
void CUDAAllocatorConfig::parseArgs(const char* env) {
// If empty, set the default values
m_max_split_size = std::numeric_limits<size_t>::max();
m_roundup_power2_divisions.assign(kRoundUpPowerOfTwoIntervals, 0);
m_garbage_collection_threshold = 0;
bool used_cudaMallocAsync = false;
bool used_native_specific_option = false;
if (env == nullptr) {
return;
}
{
std::lock_guard<std::mutex> lock(m_last_allocator_settings_mutex);
m_last_allocator_settings = env;
}
std::vector<std::string> config;
lexArgs(env, config);
for (size_t i = 0; i < config.size(); i++) {
std::string_view config_item_view(config[i]);
if (config_item_view == "max_split_size_mb") {
i = parseMaxSplitSize(config, i);
used_native_specific_option = true;
} else if (config_item_view == "max_non_split_rounding_mb") {
i = parseMaxNonSplitRoundingSize(config, i);
used_native_specific_option = true;
} else if (config_item_view == "garbage_collection_threshold") {
i = parseGarbageCollectionThreshold(config, i);
used_native_specific_option = true;
} else if (config_item_view == "roundup_power2_divisions") {
i = parseRoundUpPower2Divisions(config, i);
used_native_specific_option = true;
} else if (config_item_view == "backend") {
i = parseAllocatorConfig(config, i, used_cudaMallocAsync);
} else if (config_item_view == "expandable_segments") {
used_native_specific_option = true;
consumeToken(config, ++i, ':');
++i;
TORCH_CHECK(
i < config.size() &&
(std::string_view(config[i]) == "True" ||
std::string_view(config[i]) == "False"),
"Expected a single True/False argument for expandable_segments");
config_item_view = config[i];
m_expandable_segments = (config_item_view == "True");
} else if (
// ROCm build's hipify step will change "cuda" to "hip", but for ease of
// use, accept both. We must break up the string to prevent hipify here.
config_item_view == "release_lock_on_hipmalloc" ||
config_item_view ==
"release_lock_on_c"
"udamalloc") {
used_native_specific_option = true;
consumeToken(config, ++i, ':');
++i;
TORCH_CHECK(
i < config.size() &&
(std::string_view(config[i]) == "True" ||
std::string_view(config[i]) == "False"),
"Expected a single True/False argument for release_lock_on_cudamalloc");
config_item_view = config[i];
m_release_lock_on_cudamalloc = (config_item_view == "True");
} else if (
// ROCm build's hipify step will change "cuda" to "hip", but for ease of
// use, accept both. We must break up the string to prevent hipify here.
config_item_view == "pinned_use_hip_host_register" ||
config_item_view ==
"pinned_use_c"
"uda_host_register") {
i = parsePinnedUseCudaHostRegister(config, i);
used_native_specific_option = true;
} else if (config_item_view == "pinned_num_register_threads") {
i = parsePinnedNumRegisterThreads(config, i);
used_native_specific_option = true;
} else if (config_item_view == "pinned_use_background_threads") {
i = parsePinnedUseBackgroundThreads(config, i);
used_native_specific_option = true;
} else {
TORCH_CHECK(
false, "Unrecognized CachingAllocator option: ", config_item_view);
}
if (i + 1 < config.size()) {
consumeToken(config, ++i, ',');
}
}
if (used_cudaMallocAsync && used_native_specific_option) {
TORCH_WARN(
"backend:cudaMallocAsync ignores max_split_size_mb,"
"roundup_power2_divisions, and garbage_collect_threshold.");
}
}
size_t CUDAAllocatorConfig::parsePinnedUseCudaHostRegister(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(
(config[i] == "True" || config[i] == "False"),
"Expected a single True/False argument for pinned_use_cuda_host_register");
m_pinned_use_cuda_host_register = (config[i] == "True");
} else {
TORCH_CHECK(
false, "Error, expecting pinned_use_cuda_host_register value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parsePinnedNumRegisterThreads(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
size_t val2 = stoi(config[i]);
TORCH_CHECK(
llvm::isPowerOf2_64(val2),
"Number of register threads has to be power of 2 ",
"");
auto maxThreads = CUDAAllocatorConfig::pinned_max_register_threads();
TORCH_CHECK(
val2 <= maxThreads,
"Number of register threads should be less than or equal to " +
std::to_string(maxThreads),
"");
m_pinned_num_register_threads = val2;
} else {
TORCH_CHECK(
false, "Error, expecting pinned_num_register_threads value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parsePinnedUseBackgroundThreads(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(
(config[i] == "True" || config[i] == "False"),
"Expected a single True/False argument for pinned_use_background_threads");
m_pinned_use_background_threads = (config[i] == "True");
} else {
TORCH_CHECK(
false, "Error, expecting pinned_use_background_threads value", "");
}
return i;
}
// General caching allocator utilities
void setAllocatorSettings(const std::string& env) {
CUDACachingAllocator::CUDAAllocatorConfig::instance().parseArgs(env.c_str());
}
} // namespace c10::cuda::CUDACachingAllocator
|