File: CUDACachingAllocator.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (4056 lines) | stat: -rw-r--r-- 145,321 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
#include <c10/cuda/CUDACachingAllocator.h>

#include <c10/core/impl/GPUTrace.h>
#include <c10/cuda/CUDAAllocatorConfig.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/CallOnce.h>
#include <c10/util/Gauge.h>
#include <c10/util/ScopeExit.h>
#include <c10/util/UniqueVoidPtr.h>
#include <c10/util/env.h>
#include <c10/util/error.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/hash.h>
#include <c10/util/llvmMathExtras.h>
#include <c10/util/static_tracepoint.h>

#if !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
#include <c10/cuda/driver_api.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#endif

#include <c10/util/Exception.h>
#include <cuda_runtime_api.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <memory>
#include <mutex>
#include <regex>
#include <set>
#include <utility>
#include <vector>

TORCH_SDT_DEFINE_SEMAPHORE(malloc)
TORCH_SDT_DEFINE_SEMAPHORE(free)

namespace c10 {

C10_DEFINE_REGISTRY(FreeCudaMemoryCallbacksRegistry, FreeMemoryCallback);

namespace cuda::CUDACachingAllocator {

using namespace c10::CachingDeviceAllocator;

// Included here as this is externally used in CUDAAllocatorConfig
const size_t kLargeBuffer =
    20971520; // "large" allocations may be packed in 20 MiB blocks

namespace Native {

//
// Yet another caching allocator for CUDA device allocations.
//
// - Allocations are associated with a stream. Once freed, blocks can be
//   re-allocated on the same stream, but not on any other stream.
// - The allocator attempts to find the smallest cached block that will fit the
//   requested size. If the block is larger than the requested size, it may be
//   split. If no block is found, the allocator will delegate to cudaMalloc.
// - If the cudaMalloc fails, the allocator will attempt to free one cached
//   block of sufficient size that is not split and retry the allocation.
//   If this also fails, the allocator will attempt to free all cached blocks
//   that are not split and retry the allocation.
// - Large (>1MB) and small allocations are stored in separate pools.
//   Small requests are packed into 2MB buffers. Large requests will use the
//   smallest available free block or allocate a new block using cudaMalloc.
// - To reduce fragmentation, requests between 1MB and 10MB will allocate and
//   split a 20MB block, if no free block of sufficient size is available.
// - To further reduce fragmentation, blocks >= max_split_size are not allowed
//   to be split. These oversize cached blocks will still satisfy requests
//   within 1MB of the oversize cached block size.
//
// With this allocator, allocations and frees should logically be considered
// "usages" of the memory segment associated with streams, just like kernel
// launches. The programmer must insert the proper synchronization if memory
// segments are used from multiple streams.
//
// The library provides a recordStream() function to help insert the correct
// synchronization when allocations are used on multiple streams. This will
// ensure that the block is not reused before each recorded stream completes
// work.
//

/**
 * Note [Interaction with CUDA graph capture]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * Graph capture performs a dry run of a region of execution, freezing all CUDA
 * work (and virtual addresses used during that work) into a "graph." The graph
 * may be "replayed" like a single giant kernel, with greatly reduced CPU
 * overhead as well as modestly improved GPU performance.
 *
 * Because capture bakes in memory addresses, the memory used during capture
 * must be available for the graph to use during replay. DeviceCachingAllocator
 * assigns and frees memory eagerly and dynamically, so if we're not careful
 * about managing graphs' memory, at replay time those memory addresses could be
 * used by other tensors.
 *
 * To guarantee a graph's baked in addresses are safe to reuse in replay,
 * DeviceAllocator satisfies allocations from a graph-private memory pool during
 * capture, and doesn't begin cudaFreeing those addresses until the graph is
 * destroyed.
 *
 * Within the private pool, allocations are freed and reassigned as usual during
 * capture. Memory regions will be used in a consistent order during replay. So
 * a private pool doesn't use memory more wastefully than the default pools
 * during capture, but it does reserve its high-water mark of used memory away
 * from the default pools as long as the capture(s) it served survive
 * (regardless whether those captures are idle or replaying).
 *
 * CUDAGraph's requests for private pools are mediated by
 * DeviceAllocator::notifyCaptureBegin,
 *                  notifyCaptureAboutToEnd,
 *                  notifyCaptureEnded,
 *                  notifyCaptureDestroy.
 */

constexpr size_t kMinBlockSize =
    512; // all sizes are rounded to at least 512 bytes
constexpr size_t kSmallSize = 1048576; // largest "small" allocation is 1 MiB
constexpr size_t kSmallBuffer =
    2097152; // "small" allocations are packed in 2 MiB blocks
constexpr size_t kMinLargeAlloc =
    10485760; // allocations between 1 and 10 MiB may use kLargeBuffer
constexpr size_t kRoundLarge = 2097152; // round up large allocations to 2 MiB

static char SHAREABLE_HANDLE_VERSION = 1;
enum ShareableHandleType : char {
  SHAREABLE_CUDA_MALLOC = 'c',
  SHAREABLE_CUDA_EXPANDABLE_SEGMENT = 'e'
};

namespace {

using stream_set = ska::flat_hash_set<cuda::CUDAStream>;

void decrease_stat_array(
    StatArray& stat_array,
    size_t amount,
    const StatTypes& stat_types) {
  for_each_selected_stat_type(
      stat_types, [&stat_array, amount](size_t stat_type) {
        stat_array[stat_type].decrease(amount);
      });
}

struct Block;
struct PrivatePool;
typedef bool (*Comparison)(const Block*, const Block*);
static bool BlockComparatorSize(const Block* a, const Block* b);
static bool BlockComparatorAddress(const Block* a, const Block* b);

struct BlockPool {
  BlockPool(bool small, PrivatePool* private_pool = nullptr)
      : blocks(BlockComparatorSize),
        unmapped(BlockComparatorAddress),
        is_small(small),
        owner_PrivatePool(private_pool) {}

  // Do not insert a Block to blocks directly; use insert_into_blocks(),
  // instead.
  std::set<Block*, Comparison> blocks;
  std::set<Block*, Comparison> unmapped;
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  const bool is_small;
  PrivatePool* owner_PrivatePool;
  int64_t get_free_blocks_call_count{0};

  // Add a Block into blocks set with updating gc counter.
  std::pair<std::set<Block*, Comparison>::iterator, bool> insert_into_blocks(
      Block* block);
};

struct ExpandableSegment;

struct Block {
  c10::DeviceIndex device; // gpu
  cudaStream_t stream; // allocation stream
  stream_set stream_uses; // streams on which the block was used
  size_t size; // block size in bytes
  size_t requested_size; // memory originally requested
  BlockPool* pool{nullptr}; // owning memory pool
  void* ptr{nullptr}; // memory address
  bool allocated{false}; // in-use flag
  bool mapped{true}; // is the virtual address range this Block references
                     // backed by physical pages. Always true when
                     // expandable_segment_ is null. When false
                     // This Block will be aligned to the segment size
                     // of its expandable_segment_.
  Block* prev{nullptr}; // prev block if split from a larger allocation
  Block* next{nullptr}; // next block if split from a larger allocation
  int event_count{0}; // number of outstanding CUDA events
  int64_t gc_count_base{0}; // get_free_blocks_call_count when Block is inserted
  std::shared_ptr<GatheredContext> context_when_allocated;
  // only set for the first block in the segment (when prev == null)
  // this records the frame information when cudaMalloc was called
  // whereas context_when_allocated records the last time we handed this
  // memory out from our cache.
  std::shared_ptr<GatheredContext> context_when_segment_allocated;

  ExpandableSegment* expandable_segment_{nullptr};

  Block(
      c10::DeviceIndex device,
      cudaStream_t stream,
      size_t size,
      BlockPool* pool,
      void* ptr)
      : device(device),
        stream(stream),
        stream_uses(),
        size(size),
        requested_size(0),
        pool(pool),
        ptr(ptr) {}

  // constructor for search key
  Block(c10::DeviceIndex device, cudaStream_t stream, size_t size)
      : device(device),
        stream(stream),
        stream_uses(),
        size(size),
        requested_size(0) {}

  size_t gc_count() {
    TORCH_INTERNAL_ASSERT(pool);
    return static_cast<int>(pool->get_free_blocks_call_count - gc_count_base);
  }

  bool is_split() const {
    return (prev != nullptr) || (next != nullptr);
  }
  void splice(Block* before, Block* after) {
    if (before) {
      TORCH_INTERNAL_ASSERT(before->next == after);
      before->next = this;
    }
    prev = before;
    if (after) {
      TORCH_INTERNAL_ASSERT(after->prev == before);
      after->prev = this;
    }
    next = after;
  }
};

std::pair<std::set<Block*, Comparison>::iterator, bool> BlockPool::
    insert_into_blocks(Block* block) {
  block->gc_count_base = get_free_blocks_call_count;
  return blocks.insert(block);
}

struct SegmentRange {
  char* ptr;
  size_t size;
  SegmentRange(void* p, size_t s) : ptr(static_cast<char*>(p)), size(s) {}
};

#if !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)

/*
Note [Expandable Segments]

Rationale

For large (>2MB) allocations, the allocator calls cudaMalloc to get allocations
that are the same size as what the user requests. In the future, parts of these
allocations can be reused for other requests if they are free. This works well
when the program makes many requests of exactly the same size or of sizes that
even multiples of that size. Many deep learning models follow this behavior.
However, one common exception is when the batch size changes slightly from one
iteration to the next, e.g. in batched inference. When the program runs
initially with batch size N, it will make allocations appropriate for that size.
If in the future, it runs at size N - 1, the existing allocations will still be
big enough. However, if it runs at size N + 1, then it will have to make new
allocations that are slightly larger. Not all the tensors are the same size.
Some might be (N + 1)*A and others (N + 1)*A*B where A and B are some non-batch
dimensions in the model. Because the allocator reuses existing allocations when
they are big enough, some number of (N + 1)*A allocations will actually fit in
the already existing N*B*A segments, though not perfectly. As the model runs it
will partially fill up all of these segments leaving unusable free slices of
memory at the end of these segments. The allocator at some point will need to
cudaMalloc a new (N + 1)*A*B segment. If there is not enough memory, there is
now no way to recover the slices of memory that are free at the end of existing
segments. With models 50+ layers deep, this pattern might repeat 50+ times
creating many slivers.

Approach

Expandable segments allows the allocator to create a segment initially and then
expand its size later when more memory is needed. Instead of making one segment
per allocation, it tries to make one segment (per stream) that grows as
necessary. Now when the N + 1 case runs, the allocations will tile nicely into
the one large segment until it fills up. Then more memory is requested and
appended to the end of the segment. This process does not create as many slivers
of unusable memory, so it is more likely to succeed at finding this memory.

Implementation

The expandable_segments:True option is used to enable/disable this behavior. We
use cuda's low-level memory APIs, which are similar to mmap, to extend the
memory segments. These APIs separate the allocation of physical memory
(cuMemCreate) from the allocation of virtual address space (cuMemAddressReserve)
and the associate between them cuMemMap/cuMemSetAccess.

When we allocate a new segment, we allocate enough address space to map
basically the entire physical memory of the GPU (there is 256TiB of address
space), but we only map enough physical memory to handle the current amount of
memory needed by the program. As more is requested, we add more physical memory
to the segment. This can work at the granularity of GPU pages which are 2MiB
currently.

If we end up out of memory, we can unmap all the memory in our segment
corresponding to empty physical pages, and return it to CUDA for use at another
address in the segment or in a segment for a different stream.

A current limitation of CUDA's API is that physical memory
(CUmemGenericAllocationHandle) cannot be split up after it is mapped even if the
handle holds multiple GPU pages. The cost to map/unmap memory is proportional to
the number of physical memory chunks that were allocated (mapping 10 separately
allocated 2MiB pages takes 10x time compared to mapping one 20MiB physical
allocation of 10 pages).  Changing memory mappings also appears to involve at
least some synchronous actions with the GPU and so should be considered an
expensive operation. To limit overhead, we use 2MiB pages for our small pool and
20MiB pages for our large pool. Initially allocation using expandable_blocks
will be slower than cudaMalloc, though still in the milliseconds range for
mapping the entire memory.

When mapping new memory to expand the segment, we look for the lowest address at
which we can fit a new allocation by adding new pages. Normally this will be at
the end of the block. But if have previously unmapped blocks earlier in the
segment during an OOM, it will first try to fill in those gaps to keep the
segment as a single block. By allocating at the lowest address we encourage
the split up parts of the block to merge into a single block again, reducing
fragmentation potential.

Allocation of blocks in the segment uses the same best-fit heuristics of the
rest of the allocator.

Expandable blocks can be enabled/disabled throughout the run of a program. When
disabled, the allocator will not put new allocations in an expandable block.

Limitations

* Slightly slower initial memory allocation speed.
* IPC of cuda tensors (e.g. for multiprocess dataloaders) is not supported.
However, it is possible to temporarily disable (expandable_segments:False) the
bevhavior for allocator tensors that need to be used cross-process.
* CUDA runtime APIs related to sharing memory across process
(cudaDeviceEnablePeerAccess) do not work for memory allocated with cuMemMap.
Instead these mapping have to be done manually. The allocator now has an
`enablePeerAccess` method to do this.
*/

struct ExpandableSegment {
  ExpandableSegment(
      c10::DeviceIndex device,
      std::optional<cudaStream_t> stream,
      size_t address_space_size,
      size_t segment_size,
      std::vector<c10::DeviceIndex> peers)
      : device_(device),
        stream_(stream),
        // 2MB for small pool, 20MB for large pool
        segment_size_(segment_size),
        max_handles_(numSegments(address_space_size)),
        peers_(std::move(peers)) {
    cudaDeviceProp prop{};
    C10_CUDA_CHECK(cudaGetDeviceProperties(&prop, device_));
    // we allocate enough address space for 1 1/8 the total memory on the GPU.
    // This allows for some cases where we have to unmap pages earlier in the
    // segment to put them at the end.
    max_handles_ = numSegments(prop.totalGlobalMem + prop.totalGlobalMem / 8);
    C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemAddressReserve_(
        &ptr_, segment_size_ * max_handles_, 0ULL, 0, 0ULL));
  }
  ExpandableSegment(const ExpandableSegment&) = delete;
  ExpandableSegment(ExpandableSegment&&) = delete;
  ExpandableSegment operator=(const ExpandableSegment&) = delete;
  ExpandableSegment operator=(ExpandableSegment&&) = delete;

  // begin must be aligned to segment_size_.
  // returns the actual range mapped, which may be
  // greater than requested if size is not aligned to segment_size_.
  // return size of 0 indicates OOM
  SegmentRange map(SegmentRange range) {
    auto begin = segmentLeft(range.ptr);
    auto end = segmentRight(range.ptr + range.size);
    TORCH_INTERNAL_ASSERT(ptr() + begin * segment_size_ == range.ptr);
    if (begin == end) {
      return rangeFromHandles(begin, end);
    }
    while (end > handles_.size()) {
      handles_.emplace_back(std::nullopt);
    }
    for (auto i : c10::irange(begin, end)) {
      TORCH_INTERNAL_ASSERT(!handles_.at(i));
      CUmemGenericAllocationHandle handle = 0;
      CUmemAllocationProp prop = {};
      prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
#ifndef FBCODE_CAFFE2
      prop.requestedHandleTypes = CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR;
#endif
      prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
      // NOLINTNEXTLINE(bugprone-signed-char-misuse)
      prop.location.id = static_cast<int>(device_);
      auto status =
          DriverAPI::get()->cuMemCreate_(&handle, segment_size_, &prop, 0);
      if (status == CUDA_ERROR_OUT_OF_MEMORY) {
        for (auto j : c10::irange(begin, i)) {
          auto h = handles_.at(j).value();
          handles_.at(j) = std::nullopt;
          C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemRelease_(h.handle));
        }
        trimHandles();
        return rangeFromHandles(begin, begin);
      }
      C10_CUDA_DRIVER_CHECK(status);
      handles_.at(i) = Handle{handle, std::nullopt};
    }
    mapAndSetAccess(begin, end);
    return rangeFromHandles(begin, end);
  }

  // unmaps all the completely empty segment_size_ segments between
  // [begin, begin + size), returns the offset where the range begin,
  // and the actual size unmapped (multiple of segment_size_)
  SegmentRange unmap(SegmentRange range) {
    auto begin = segmentRight(range.ptr);
    auto end = segmentLeft(range.ptr + range.size);
    if (begin >= end) {
      return SegmentRange{range.ptr, 0};
    }
    unmapHandles(begin, end);
    return rangeFromHandles(begin, end);
  }

  // Setup IPC sharing for range.
  // Returns the (larger) range that was actually shared.
  // Serializes data to std::ostream that can be passed to the
  // other process, and then restored as an exapandable segment
  // via ExpandableSegment::fromShared(istream);
  SegmentRange share(SegmentRange range, std::ostream& buf) {
    auto begin = segmentLeft(range.ptr);
    auto end = segmentRight(range.ptr + range.size);
    ShareHeader header{getpid(), segment_size_, end - begin};
    buf.write((const char*)&header, sizeof(ShareHeader));
    for (auto i : c10::irange(begin, end)) {
      auto& handle = handles_.at(i).value();
      if (!handle.fd) {
        int fd = 0;
        C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemExportToShareableHandle_(
            &fd, handle.handle, CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR, 0));
        handle.fd = fd;
      }
      int fd = *handle.fd;
      buf.write((const char*)&fd, sizeof(int));
    }
    return rangeFromHandles(begin, end);
  }

  static std::unique_ptr<ExpandableSegment> fromShared(
      c10::DeviceIndex device,
      std::vector<c10::DeviceIndex> peers,
      std::istream& buf) {
    ShareHeader header{};
    buf.read((char*)&header, sizeof(ShareHeader));
    auto segment = std::make_unique<ExpandableSegment>(
        device,
        std::nullopt,
        header.num_handles * header.segment_size,
        header.segment_size,
        std::move(peers));
// older build setups (e.g. multiwheels) do not have this syscall, added 2020
// but the kernel on the system might still support it.
#ifndef SYS_pidfd_open
#define SYS_pidfd_open 434
#endif
#ifndef SYS_pidfd_getfd
#define SYS_pidfd_getfd 438
#endif
    auto pidfd = syscall(SYS_pidfd_open, header.pid, 0);
    TORCH_CHECK(
        pidfd != -1 || errno != ENOSYS,
        "The kernel on this machine does not support the pidfd_open syscall needed to use IPC for CUDA tensors when expandable_segments:True is set. "
        "Consider using expandable_segments:False via torch.cuda.memory._set_allocator_settings('expandable_segments:False') for this allocation.");
    TORCH_CHECK(pidfd != -1, "pidfd_open:", c10::utils::str_error(errno));
    for (auto i : c10::irange(header.num_handles)) {
      (void)i;
      int fd = 0;
      buf.read((char*)&fd, sizeof(int));
      auto myfd = syscall(SYS_pidfd_getfd, pidfd, fd, 0);
      if (myfd == -1) {
        auto err = errno;
        close((int)pidfd);
        for (auto& h : segment->handles_) {
          C10_CUDA_DRIVER_CHECK(
              DriverAPI::get()->cuMemRelease_(h.value().handle));
          h = std::nullopt;
        }
        TORCH_CHECK(
            err != ENOSYS,
            "The kernel on this machine does not support the pidfd_getfd syscall needed to use IPC for CUDA tensors when expandable_segments:True is set. "
            "Consider using expandable_segments:False via torch.cuda.memory._set_allocator_settings('expandable_segments:False') for this allocation.");
        TORCH_CHECK(false, "pidfd_getfd: ", c10::utils::str_error(err));
      }
      CUmemGenericAllocationHandle handle = 0;
      C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemImportFromShareableHandle_(
          &handle,
          // NOLINTNEXTLINE(performance-no-int-to-ptr)
          (void*)(uintptr_t)myfd,
          CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR));
      close((int)myfd);
      segment->handles_.emplace_back(Handle{handle, std::nullopt});
    }
    close((int)pidfd);
    segment->mapAndSetAccess(0, header.num_handles);
    return segment;
  }

  char* ptr() const {
    // NOLINTNEXTLINE(performance-no-int-to-ptr)
    return reinterpret_cast<char*>(ptr_);
  }

  size_t size() const {
    return max_handles_ * segment_size_;
  }

  void addPeer(c10::DeviceIndex device) {
    peers_.push_back(device);
    forEachAllocatedRange(
        [&](size_t begin, size_t end) { setAccess(device, begin, end); });
  }

  ~ExpandableSegment() {
    forEachAllocatedRange(
        [&](size_t begin, size_t end) { unmapHandles(begin, end); });
    C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemAddressFree_(
        ptr_, segment_size_ * max_handles_));
  }

 private:
  void setAccess(c10::DeviceIndex device, size_t begin, size_t end) {
    CUmemAccessDesc desc;
    desc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
    // NOLINTNEXTLINE(bugprone-signed-char-misuse)
    desc.location.id = static_cast<int>(device);
    desc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
    C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemSetAccess_(
        ptr_ + begin * segment_size_, (end - begin) * segment_size_, &desc, 1));
  }

  void mapAndSetAccess(size_t begin, size_t end) {
    for (auto i : c10::irange(begin, end)) {
      C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemMap_(
          ptr_ + i * segment_size_,
          segment_size_,
          0,
          handles_.at(i).value().handle,
          0ULL));
    }
    setAccess(device_, begin, end);
    for (auto p : peers_) {
      setAccess(p, begin, end);
    }
  }

  void unmapHandles(size_t begin, size_t end) {
    // note: unlike cudaFree, MemUnmap and MemRelease do
    // not appear to synchronize in all cases, so we have to wait for the
    // stream to finish before this memory is truly free.

    // cannot call c10::cuda::stream_synchronize because
    // it might grab the GIL which can lead to a deadlock
    // Locking order must be GIL -> Allocator Lock
    if (stream_) {
      C10_CUDA_CHECK(cudaStreamSynchronize(*stream_));
    } else {
      cuda::CUDAGuard device_guard(device_);
      C10_CUDA_CHECK(cudaDeviceSynchronize());
    }
    for (auto i : c10::irange(begin, end)) {
      Handle h = handles_.at(i).value();
      handles_.at(i) = std::nullopt;
      C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemUnmap_(
          ptr_ + segment_size_ * i, segment_size_));
      if (h.fd) {
        close(*h.fd);
      }
      C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemRelease_(h.handle));
    }
    trimHandles();
  }
  void trimHandles() {
    while (!handles_.empty() && !handles_.back()) {
      handles_.pop_back();
    }
  }
  void forEachAllocatedRange(const std::function<void(size_t, size_t)>& fn) {
    size_t start = 0;
    for (auto i : c10::irange(handles_.size())) {
      if (handles_.at(i) && (i == 0 || !handles_.at(i - 1))) {
        start = i;
      }
      if (handles_.at(i) && (i + 1 == handles_.size() || !handles_.at(i + 1))) {
        fn(start, i + 1);
      }
    }
  }
  size_t numSegments(size_t size) {
    return (size + segment_size_ - 1) / segment_size_;
  }
  size_t segmentLeft(char* p) {
    auto size = p - ptr();
    return size / segment_size_;
  }
  size_t segmentRight(char* p) {
    auto size = p - ptr();
    return numSegments(size);
  }
  SegmentRange rangeFromHandles(size_t begin, size_t end) {
    return SegmentRange(
        ptr() + segment_size_ * begin, segment_size_ * (end - begin));
  }
  c10::DeviceIndex device_;
  std::optional<cudaStream_t> stream_;
  CUdeviceptr ptr_{};
  size_t segment_size_;
  size_t max_handles_;
  struct Handle {
    CUmemGenericAllocationHandle handle;
    std::optional<int> fd;
  };
  struct ShareHeader {
    pid_t pid;
    size_t segment_size;
    size_t num_handles;
  };
  std::vector<std::optional<Handle>> handles_;
  // devices on which this memory should be mapped in addition
  // to the device where the physical memory lives (device_).
  std::vector<c10::DeviceIndex> peers_;
};
#else
struct ExpandableSegment {
  ExpandableSegment(
      c10::DeviceIndex device,
      std::optional<cudaStream_t> stream,
      size_t address_space_size,
      size_t segment_size,
      std::vector<c10::DeviceIndex> peers) {
    TORCH_INTERNAL_ASSERT(false, "expandable segment not supported");
  }
  SegmentRange map(SegmentRange range) {
    return SegmentRange(nullptr, 0);
  }
  SegmentRange unmap(SegmentRange range) {
    return SegmentRange(nullptr, 0);
  }
  SegmentRange share(SegmentRange range, std::ostream& ss) {
    return SegmentRange(nullptr, 0);
  }
  static std::unique_ptr<ExpandableSegment> fromShared(
      c10::DeviceIndex device,
      std::vector<c10::DeviceIndex> peers,
      std::istream& buf) {
    return {};
  }
  char* ptr() const {
    return nullptr;
  }
  size_t size() const {
    return 0;
  }
  void addPeer(c10::DeviceIndex device) {}
};
#endif

// BlockState, BlockPoolState, and PrivatePoolState contain the information
// needed to reconstruct a private pool to a previous state. See note
// [Checkpointing PrivatePoolState]
struct BlockState {
  c10::DeviceIndex device = 0;
  cudaStream_t stream = nullptr;
  stream_set stream_uses = {};
  size_t size = 0;
  void* ptr = nullptr;
  bool allocated = false;
  int64_t gc_count_base = 0;
  // maintain invariant that event_count == 0 ;
  // history will be left alone in checkpoint

  BlockState(Block* block);
};

struct SegmentState {
  std::vector<BlockState> blocks;
  bool is_small = false;

  SegmentState(Block* head);
};

struct PrivatePoolState : AllocatorState {
  // omitting use_count, and cudaMalloc_count as they remain the same
  MempoolId_t owner_id = {0, 0};

  std::vector<SegmentState> segments;

  PrivatePoolState(
      MempoolId_t pool_id,
      const std::vector<Block*>& private_pool_head_blocks);
};

struct RestoreResult {
  std::vector<void*> allocations_freed;
  std::vector<Block*> allocations_created;
};

static bool BlockComparatorSize(const Block* a, const Block* b) {
  if (a->stream != b->stream) {
    return (uintptr_t)a->stream < (uintptr_t)b->stream;
  }
  if (a->size != b->size) {
    return a->size < b->size;
  }
  return (uintptr_t)a->ptr < (uintptr_t)b->ptr;
}
static bool BlockComparatorAddress(const Block* a, const Block* b) {
  if (a->stream != b->stream) {
    return (uintptr_t)a->stream < (uintptr_t)b->stream;
  }
  return (uintptr_t)a->ptr < (uintptr_t)b->ptr;
}

struct AllocParams {
  AllocParams(
      c10::DeviceIndex device,
      size_t size,
      cudaStream_t stream,
      BlockPool* pool,
      size_t alloc_size,
      DeviceStats& stats)
      : search_key(device, stream, size), pool(pool), alloc_size(alloc_size) {}

  c10::DeviceIndex device() const {
    return search_key.device;
  }
  cudaStream_t stream() const {
    return search_key.stream;
  }
  size_t size() const {
    return search_key.size;
  }

  Block search_key;
  BlockPool* pool;
  size_t alloc_size;
  Block* block{nullptr};
  StatTypes stat_types = {false};
  cudaError_t err{cudaSuccess};
};

// Note: cudaEventCreate when concurrently invoked from multiple threads can be
// very expensive (at least on certain device/driver combinations). Thus, we a)
// serialize event creation at a per-device level, and b) pool the events to
// avoid constantly calling cudaEventCreate/cudaEventDestroy. This results in
// significant improvements in multithreaded workloads with high allocation
// rates.
class EventPool {
 public:
  using Event = std::unique_ptr<cudaEvent_t, std::function<void(cudaEvent_t*)>>;
  // TODO: Explicit device count
  EventPool() : pools_(at::cuda::device_count()) {}

  Event get(c10::DeviceIndex device) {
    TORCH_INTERNAL_ASSERT(0 <= device);
    TORCH_INTERNAL_ASSERT(device < static_cast<int>(pools_.size()));
    auto& pool = pools_[device];
    auto destructor = [&pool](cudaEvent_t* event) {
      std::lock_guard<std::mutex> g(pool.mutex_);
      pool.event_pool_.push_back(std::unique_ptr<cudaEvent_t>(event));
    };

    // Try to acquire an event from the per-device pool.
    {
      std::lock_guard<std::mutex> g(pool.mutex_);
      if (!pool.event_pool_.empty()) {
        auto* event = pool.event_pool_.back().release();
        pool.event_pool_.pop_back();
        return Event(event, destructor);
      }
    }
    // otherwise, allocate a new event that will be returned to the pool on
    // destruction.
    auto new_ptr = std::make_unique<cudaEvent_t>();
    C10_CUDA_CHECK(
        cudaEventCreateWithFlags(new_ptr.get(), cudaEventDisableTiming));

    return Event(new_ptr.release(), destructor);
  }

  void empty_cache() {
    for (auto& pool : pools_) {
      std::lock_guard<std::mutex> g(pool.mutex_);
      pool.event_pool_.clear();
    }
  }

 private:
  struct PerDevicePool {
    alignas(64) std::mutex mutex_;
    std::vector<std::unique_ptr<cudaEvent_t>> event_pool_;
  };
  std::vector<PerDevicePool> pools_;
};

// CUDA graphs helper
struct PrivatePool {
  PrivatePool()
      : large_blocks(/*small=*/false, this),
        small_blocks(/*small=*/true, this) {}
  PrivatePool(const PrivatePool&) = delete;
  PrivatePool(PrivatePool&&) = delete;
  PrivatePool& operator=(const PrivatePool&) = delete;
  PrivatePool& operator=(PrivatePool&&) = delete;
  ~PrivatePool() = default;

  // Number of live graphs using this pool
  int use_count{1};
  // Number of unfreed cudaMallocs made for this pool. When use_count and
  // cudaMalloc_count drop to zero, we can delete this PrivatePool from
  // graph_pools.
  int cudaMalloc_count{0};
  // Instead of maintaining private BlockPools here, I could stuff all blocks
  // (private or no) into the top-level large_blocks and small_blocks, and
  // distinguish private blocks by adding a "pool id" check above the stream
  // check in BlockComparator. BlockComparator is performance- critical though,
  // I'd rather not add more logic to it.
  BlockPool large_blocks;
  BlockPool small_blocks;
};

BlockState::BlockState(Block* block)
    : device(block->device),
      stream(block->stream),
      stream_uses(block->stream_uses),
      size(block->size),
      ptr(block->ptr),
      allocated(block->allocated),
      gc_count_base(block->gc_count_base) {
  TORCH_CHECK(
      block->event_count == 0,
      "Events should have synchronized when checkpointing block");
};

SegmentState::SegmentState(Block* head) {
  TORCH_INTERNAL_ASSERT(head->prev == nullptr && head->pool != nullptr);
  is_small = head->pool->is_small;

  for (Block* curr = head; curr != nullptr; curr = curr->next) {
    blocks.emplace_back(curr);
  }
}

PrivatePoolState::PrivatePoolState(
    MempoolId_t pool_id,
    const std::vector<Block*>& private_pool_head_blocks)
    : owner_id(std::move(pool_id)) {
  for (Block* head : private_pool_head_blocks) {
    segments.emplace_back(head);
  }
}

struct MempoolIdHash {
  std::size_t operator()(const MempoolId_t& mempool_id) const noexcept {
    return mempool_id.first != 0 ? mempool_id.first : mempool_id.second;
  }
};

cudaError_t allocPrimitive(void** ptr, size_t size, AllocParams& p) {
  auto active_pool = MemPoolContext::getActiveMemPool();
  if (active_pool && active_pool->allocator() && p.pool->owner_PrivatePool) {
    *ptr = active_pool->allocator()->raw_alloc(size);
    return *ptr ? cudaSuccess : cudaErrorMemoryAllocation;
  } else {
    return C10_CUDA_ERROR_HANDLED(cudaMalloc(ptr, size));
  }
}

cudaError_t cudaMallocMaybeCapturing(void** ptr, size_t size, AllocParams& p) {
  if (at::cuda::currentStreamCaptureStatusMayInitCtx() ==
      at::cuda::CaptureStatus::None) {
    return allocPrimitive(ptr, size, p);
  } else {
    // It's ok to capture cudaMallocs, as long as we never cudaFree those
    // addresses before replay.
    // Capturing cudaMalloc behaves nicely: it gives the graph new VA,
    // but is ignored (won't leakily allocate new memory) in replays.
    at::cuda::CUDAStreamCaptureModeGuard g{cudaStreamCaptureModeRelaxed};
    return allocPrimitive(ptr, size, p);
  }
}

template <class T>
class RingBuffer {
 public:
  RingBuffer() {
    // alloc_trace is a pointer because we need to intentionally
    // leak this on deallocation it can hold references to Python
    // state which will already be destroyed when we are in exit handlers
    // NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer)
    alloc_trace = new std::vector<T>();
  }

  void setMaxEntries(size_t size) {
    std::lock_guard<std::mutex> lk(alloc_trace_lock);
    alloc_trace_max_entries_ = std::max(size_t(1), size);
  }

  void insertEntries(const T& entry) {
    std::lock_guard<std::mutex> lk(alloc_trace_lock);
    if (alloc_trace->size() < alloc_trace_max_entries_) {
      alloc_trace->emplace_back(entry);
    } else {
      (*alloc_trace)[alloc_trace_next++] = entry;
      if (alloc_trace_next == alloc_trace_max_entries_) {
        alloc_trace_next = 0;
      }
    }
  }

  void getEntries(std::vector<T>& result) {
    std::lock_guard<std::mutex> lk(alloc_trace_lock);
    result.reserve(alloc_trace->size());
    result.insert(
        result.end(),
        alloc_trace->begin() +
            static_cast<typename std::vector<T>::difference_type>(
                alloc_trace_next),
        alloc_trace->end());
    result.insert(
        result.end(),
        alloc_trace->begin(),
        alloc_trace->begin() +
            static_cast<typename std::vector<T>::difference_type>(
                alloc_trace_next));
  }

  void clear() {
    std::lock_guard<std::mutex> lk(alloc_trace_lock);
    alloc_trace_next = 0;
    alloc_trace->clear();
  }

 private:
  size_t alloc_trace_max_entries_ = 1;

  // Both alloc_trace and alloc_trace_next needs to be used
  // under alloc_trace_lock.
  std::mutex alloc_trace_lock;
  size_t alloc_trace_next = 0;
  std::vector<T>*
      alloc_trace; // pointer because we need to intentionally leak this on
                   // deallocation it can hold references to Python state which
                   // will already be destroyed when we are in exit handlers
};

} // anonymous namespace
} // namespace Native

static std::string reportProcessMemoryInfo(c10::DeviceIndex device) {
#ifdef PYTORCH_C10_DRIVER_API_SUPPORTED
  void* nvml_handle = DriverAPI::get_nvml_handle();
  if (!nvml_handle) {
    return "";
  }
  static c10::once_flag nvml_init;
  c10::call_once(nvml_init, [] {
    TORCH_INTERNAL_ASSERT(NVML_SUCCESS == DriverAPI::get()->nvmlInit_v2_());
  });

  cudaDeviceProp prop{};
  C10_CUDA_CHECK(cudaGetDeviceProperties(&prop, device));

  // NOLINTNEXTLINE(*-c-arrays)
  char pci_id[80];
  snprintf(
      pci_id,
      sizeof(pci_id),
      NVML_DEVICE_PCI_BUS_ID_FMT,
      prop.pciDomainID,
      prop.pciBusID,
      prop.pciDeviceID);

  nvmlDevice_t nvml_device = nullptr;
  TORCH_INTERNAL_ASSERT(
      NVML_SUCCESS ==
      DriverAPI::get()->nvmlDeviceGetHandleByPciBusId_v2_(
          pci_id, &nvml_device));

  std::vector<nvmlProcessInfo_v1_t> procs(8);
  unsigned int size = procs.size();
  nvmlReturn_t r{};
  while ((r = DriverAPI::get()->nvmlDeviceGetComputeRunningProcesses_(
              nvml_device, &size, procs.data())) ==
         NVML_ERROR_INSUFFICIENT_SIZE) {
    procs.resize(size);
  }
  unsigned int self_pid = getpid();
  std::stringstream ss;
  TORCH_INTERNAL_ASSERT(NVML_SUCCESS == r);
  ss << "";
  for (auto i : c10::irange(size)) {
    auto& proc = procs[i];
    if (self_pid == proc.pid) {
      ss << "Including non-PyTorch memory, this process";
    } else {
      ss << "Process " << proc.pid;
    }
    ss << " has " << format_size(proc.usedGpuMemory) << " memory in use. ";
  }
  return ss.str();
#else
  return "";
#endif
}

namespace Native {

class DeviceCachingAllocator {
 private:
  // lock around all operations
  mutable std::recursive_mutex mutex;

  // device statistics
  DeviceStats stats;

  // unallocated cached blocks larger than 1 MB
  BlockPool large_blocks;

  // unallocated cached blocks 1 MB or smaller
  BlockPool small_blocks;

  // allocated or in use by a stream. Holds all active allocations,
  // whether they came from graph_pools or one of the BlockPools above.
  ska::flat_hash_set<Block*> active_blocks;

  // captures_underway tracks if we are diverting some
  // allocations to a specific pool.
  // Most of the time it's empty, in which case malloc can avoid calling
  // cudaStreamGetCaptureInfo in the hot path.
  std::vector<std::pair<MempoolId_t, std::function<bool(cudaStream_t)>>>
      captures_underway;

  // See free() for this thing's purpose
  std::vector<Block*> needs_events_deferred_until_no_capture;
  // outstanding cuda events
  ska::flat_hash_map<
      cuda::CUDAStream,
      std::deque<std::pair<EventPool::Event, Block*>>>
      cuda_events;

  // record used memory.
  size_t total_allocated_memory = 0;

  size_t allowed_memory_maximum = 0;

  // all live expandable segments
  std::vector<ExpandableSegment*> expandable_segments_;
  std::vector<c10::DeviceIndex> devices_with_peer_access_;

  bool set_fraction = false;

  bool record_history = false;

  std::atomic<CreateContextFn> context_recorder_;
  RecordContext record_context_ = RecordContext::NEVER;

  // Ring buffer for memory snapshot TraceEntry's
  RingBuffer<TraceEntry> alloc_buffer;

  // Members specific to CUDA graphs

  // Private pools for CUDA graphs
  ska::flat_hash_map<MempoolId_t, std::unique_ptr<PrivatePool>, MempoolIdHash>
      graph_pools;
  // Pools no longer referenced by any graph. Their BlockPools are eligible for
  // free_blocks. Can't be a vector or deque because we might erase entries in
  // any order. Could be an std::list, but we don't care much, access and
  // insert/erase are rare.
  ska::flat_hash_map<MempoolId_t, PrivatePool*, MempoolIdHash>
      graph_pools_freeable;

  // XXX - maybe we should generalize and have multiple events
  std::vector<OutOfMemoryObserver> oom_observers_;

  std::vector<AllocatorTraceTracker> trace_trackers_;

  // mapping from block to a stream_set, containing streams on which the block
  // was used while cudagraph capturing
  std::unordered_map<Block*, stream_set> block_to_cudagraph_stream_uses;

 public:
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  DeviceCachingAllocator()
      : large_blocks(/*small=*/false), small_blocks(/*small=*/true) {
    stats.max_split_size =
        static_cast<int64_t>(CUDAAllocatorConfig::max_split_size());
    context_recorder_.store(nullptr);
  }

  void recordHistory(
      bool enabled,
      CreateContextFn context_recorder,
      size_t alloc_buffer_max_entries,
      RecordContext when) {
    std::unique_lock<std::recursive_mutex> lock(mutex);
    TORCH_CHECK(when == RecordContext::NEVER || context_recorder);
    record_history = enabled;
    context_recorder_.store(record_history ? context_recorder : nullptr);
    alloc_buffer.setMaxEntries(alloc_buffer_max_entries);
    record_context_ = enabled ? when : RecordContext::NEVER;
    if (!enabled) {
      alloc_buffer.clear();
    }
  }

  bool isHistoryEnabled() {
    return record_history;
  }

  bool checkPoolLiveAllocations(
      MempoolId_t mempool_id,
      const std::unordered_set<void*>& expected_live_allocations) {
    std::unique_lock<std::recursive_mutex> lock(mutex);

    PrivatePool* pool = nullptr;
    auto pool_it = graph_pools.find(mempool_id);
    TORCH_CHECK(pool_it != graph_pools.end(), "Could not find pool of id");
    pool = pool_it->second.get();

    TORCH_INTERNAL_ASSERT(pool != nullptr);

    size_t allocated_pool_blocks = 0;

    for (Block* b : active_blocks) {
      TORCH_INTERNAL_ASSERT(b != nullptr);
      TORCH_INTERNAL_ASSERT(b->pool != nullptr);
      if (b->allocated && b->pool->owner_PrivatePool == pool) {
        if (!expected_live_allocations.count(b->ptr)) {
          return false;
        }

        allocated_pool_blocks += 1;
      }
    }

    return allocated_pool_blocks == expected_live_allocations.size();
  }

  void attachOutOfMemoryObserver(OutOfMemoryObserver observer) {
    oom_observers_.emplace_back(std::move(observer));
  }

  void attachAllocatorTraceTracker(AllocatorTraceTracker tracker) {
    std::unique_lock<std::recursive_mutex> lock(mutex);
    trace_trackers_.emplace_back(std::move(tracker));
  }

  // Must be called outside of `mutex` or deadlocks are possible with Python
  std::shared_ptr<GatheredContext> maybeGatherContext(RecordContext level) {
    if (record_context_ < level) {
      return nullptr;
    }
    return context_recorder_.load()();
  }

  // All public methods (except the above) acquire the allocator mutex.
  // Thus, do not call a public method from another public method.

  Block* malloc(
      c10::DeviceIndex device,
      size_t orig_size,
      cudaStream_t stream) {
    // done outside the lock because we don't know what locks the recorder needs
    // to have...
    auto context = maybeGatherContext(RecordContext::STATE);

    std::unique_lock<std::recursive_mutex> lock(mutex);

    if (C10_LIKELY(captures_underway.empty())) {
      // Processes end-of-life events for outstanding allocations used on
      // multiple streams (checks if their GPU-side uses are complete and
      // recycles their memory if so)
      //
      // Q. Why skip process_events if a capture might be underway?
      // A. process_events involves cudaEventQueries, illegal during CUDA graph
      //    capture.
      //    Dumb simple solution: defer reclaiming these allocations until after
      //    capture. Cross-stream memory use is uncommon, so the deferral's
      //    effect on memory use during capture should be small.
      process_events(context);
    }
    size_t size = round_size(orig_size);
    auto& pool = get_pool(size, stream);
    const size_t alloc_size = get_allocation_size(size);
    AllocParams params(device, size, stream, &pool, alloc_size, stats);
    params.stat_types = get_stat_types_for_pool(pool);

    // First, try to get a block from the existing pool.
    bool block_found =
        // Search pool
        get_free_block(params)
        // Trigger callbacks and retry search
        || (trigger_free_memory_callbacks(params) && get_free_block(params));

    // Can't reuse an existing block; try to get a new one.
    if (!block_found) {
      // Do garbage collection if the flag is set.
      if (C10_UNLIKELY(
              set_fraction &&
              CUDAAllocatorConfig::garbage_collection_threshold() > 0.0)) {
        garbage_collect_cached_blocks(context);
      }
      // Attempt allocate
      // WARNING: alloc_block may release the allocator lock when calling
      // cudaMalloc. So far this function has not modified allocator state, but
      // keep in mind that any observed allocator state may change across calls
      // to alloc_block since it may release the lock.
      block_found = alloc_block(params, false, context, lock)
          // Free enough available cached blocks to satisfy alloc and retry
          // alloc.
          || (release_available_cached_blocks(params, context) &&
              alloc_block(params, false, context, lock))
          // Free all non-split cached blocks and retry alloc.
          || (C10_LIKELY(captures_underway.empty()) &&
              release_cached_blocks(context) &&
              alloc_block(params, true, context, lock));
    }

    if (!block_found) {
      // For any error code other than cudaErrorMemoryAllocation,
      // alloc_block should have thrown an exception already.
      TORCH_INTERNAL_ASSERT(params.err == cudaErrorMemoryAllocation);

      size_t device_free = 0;
      size_t device_total = 0;
      C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
      std::string allowed_info;

      if (set_fraction) {
        allowed_info = format_size(allowed_memory_maximum) + " allowed; ";
      }

      std::string proc_info = reportProcessMemoryInfo(device);

      record_trace(
          TraceEntry::OOM,
          device_free,
          params.size(),
          params.stream(),
          params.device(),
          std::move(context));
      stats.num_ooms += 1;

      c10::reportOutOfMemoryToProfiler(
          static_cast<int64_t>(size),
          stats.allocated_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
              .current,
          stats.reserved_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
              .current,
          c10::Device(c10::DeviceType::CUDA, device));

      auto allocated_bytes =
          stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)]
              .current;
      auto reserved_bytes =
          stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
              .current;
      auto observers_local = oom_observers_;

      size_t allocated_in_private_pools = 0;
      auto get_size_block = [](const BlockPool& pool) {
        size_t res = 0;
        for (const auto& block : pool.blocks) {
          res += block->size;
        }
        return res;
      };
      for (const auto& p : graph_pools) {
        allocated_in_private_pools += get_size_block(p.second->large_blocks);
        allocated_in_private_pools += get_size_block(p.second->small_blocks);
      }

      std::string private_pool_msg;

      if (allocated_in_private_pools > 0) {
        private_pool_msg = "with " + format_size(allocated_in_private_pools) +
            " allocated in private pools (e.g., CUDA Graphs), ";
      }

      // Make sure we do not have the device lock before calling our
      // observers which might need hold the GIL
      // It is safe to release at this point because will no longer
      // be reading any allocator state.

      lock.unlock();

      for (const auto& obs : observers_local) {
        obs(device,
            alloc_size,
            set_fraction ? allowed_memory_maximum : device_total,
            device_free);
      }

      // "total capacity": total global memory on GPU
      // "allowed": memory is allowed to use, which set by fraction.
      // "already allocated": memory allocated by the program using the
      //                      caching allocator
      // "free": free memory as reported by the CUDA API
      // "cached": memory held by the allocator but not used by the program
      //
      // The "allocated" amount  does not include memory allocated outside
      // of the caching allocator, such as memory allocated by other programs
      // or memory held by the driver.
      //
      // The sum of "allocated" + "free" + "cached" may be less than the
      // total capacity due to memory held by the driver and usage by other
      // programs.
      //
      // Note that at this point free_cached_blocks has already returned all
      // possible "cached" memory to the driver. The only remaining "cached"
      // memory is split from a larger block that is partially in-use.
      TORCH_CHECK_WITH(
          OutOfMemoryError,
          false,
          "CUDA out of memory. Tried to allocate ",
          format_size(alloc_size),
          ". GPU ",
          static_cast<int>(device),
          " has a total capacity of ",
          format_size(device_total),
          " of which ",
          format_size(device_free),
          " is free. ",
          proc_info,
          allowed_info,
          "Of the allocated memory ",
          format_size(allocated_bytes + allocated_in_private_pools),
          " is allocated by PyTorch, ",
          private_pool_msg,
          "and ",
          format_size(
              reserved_bytes - allocated_bytes - allocated_in_private_pools),
          " is reserved by PyTorch but unallocated.",
          " If reserved but unallocated memory is large try setting",
          " PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid"
          " fragmentation.  See documentation for Memory Management "
          " (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)");
    }

    bool split_remainder = should_split(params.block, params.size());
    return alloc_found_block(
        params, orig_size, std::move(context), split_remainder);
  }

  Block* alloc_found_block(
      const AllocParams& params,
      size_t orig_size,
      std::shared_ptr<GatheredContext> context,
      bool split_remainder) {
    auto size = params.size();
    auto device = params.device();
    auto pool = params.pool;
    auto stream = params.stream();

    TORCH_INTERNAL_ASSERT(
        params.err == cudaSuccess && params.block != nullptr &&
        params.block->ptr != nullptr);
    Block* block = params.block;
    Block* remaining = nullptr;

    const bool already_split = block->is_split();
    if (split_remainder) {
      remaining = block;

      block = new Block(device, stream, size, pool, block->ptr);
      block->expandable_segment_ = remaining->expandable_segment_;
      block->prev = remaining->prev;
      if (block->prev) {
        block->prev->next = block;
      }
      block->next = remaining;

      remaining->prev = block;
      remaining->ptr = static_cast<char*>(remaining->ptr) + size;
      remaining->size -= size;
      // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
      bool inserted = pool->insert_into_blocks(remaining).second;
      TORCH_INTERNAL_ASSERT_DEBUG_ONLY(inserted);

      if (already_split && !block->expandable_segment_) {
        // An already-split inactive block is being shrunk by size bytes.
        decrease_stat_array(
            stats.inactive_split_bytes, block->size, params.stat_types);
      } else if (!block->expandable_segment_) {
        // A new split inactive block is being created from a previously unsplit
        // block, size remaining->size bytes.
        for_each_selected_stat_type(params.stat_types, [&](size_t stat_type) {
          stats.inactive_split_bytes[stat_type].increase(remaining->size);
          stats.inactive_split[stat_type].increase(1);
        });
      }

    } else if (already_split && !block->expandable_segment_) {
      // An already-split block is becoming active
      for_each_selected_stat_type(params.stat_types, [&](size_t stat_type) {
        stats.inactive_split_bytes[stat_type].decrease(block->size);
        stats.inactive_split[stat_type].decrease(1);
      });
    }

    block->allocated = true;
    block->requested_size = orig_size;

    block->context_when_allocated = std::move(context);
    record_trace(
        TraceEntry::ALLOC,
        int64_t(block->ptr),
        orig_size,
        block->stream,
        block->device,
        block->context_when_allocated);

    // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
    bool inserted = active_blocks.insert(block).second;
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(inserted);

    for_each_selected_stat_type(params.stat_types, [&](size_t stat_type) {
      stats.allocation[stat_type].increase(1);
      stats.allocated_bytes[stat_type].increase(block->size);
      stats.active[stat_type].increase(1);
      stats.active_bytes[stat_type].increase(block->size);
      stats.requested_bytes[stat_type].increase(block->requested_size);
    });
    if (block->size >= CUDAAllocatorConfig::max_split_size())
      stats.oversize_allocations.increase(1);

    auto allocated_bytes_gauge =
        STATIC_GAUGE(pytorch.CUDACachingAllocator.allocated_bytes);
    allocated_bytes_gauge.record(
        stats.allocated_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
            .current);

    c10::reportMemoryUsageToProfiler(
        block->ptr,
        static_cast<int64_t>(block->size),
        stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].current,
        stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].current,
        c10::Device(c10::DeviceType::CUDA, device));

    return block;
  }

  void free(Block* block) {
    std::shared_ptr<GatheredContext> context =
        maybeGatherContext(RecordContext::ALL);
    std::lock_guard<std::recursive_mutex> lock(mutex);

    block->allocated = false;

    // following logic might modifying underlaying Block, causing the size
    // changed. We store ahead for reporting
    auto orig_block_ptr = block->ptr;
    auto orig_block_size = block->size;

    StatTypes stat_types = get_stat_types_for_pool(*block->pool);
    for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
      stats.allocation[stat_type].decrease(1);
      stats.allocated_bytes[stat_type].decrease(block->size);
    });
    auto allocated_bytes_gauge =
        STATIC_GAUGE(pytorch.CUDACachingAllocator.allocated_bytes);
    allocated_bytes_gauge.record(
        stats.allocated_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
            .current);

    record_trace(
        TraceEntry::FREE_REQUESTED,
        int64_t(block->ptr),
        block->requested_size,
        block->stream,
        block->device,
        context ? context : block->context_when_allocated);

    if (block->size >= CUDAAllocatorConfig::max_split_size())
      stats.oversize_allocations.decrease(1);

    if (!block->stream_uses.empty()) {
      if (C10_UNLIKELY(!captures_underway.empty())) {
        // It's forbidden to cudaEventQuery an event recorded during CUDA graph
        // capture. We conservatively defer recording end-of-life events until
        // the next call to process_events() (which won't happen until no
        // captures are underway)
        needs_events_deferred_until_no_capture.push_back(block);
      } else {
        insert_events(block);
      }
    } else {
      free_block(block, context);
    }

    c10::reportMemoryUsageToProfiler(
        orig_block_ptr,
        -static_cast<int64_t>(orig_block_size),
        stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].current,
        stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].current,
        c10::Device(c10::DeviceType::CUDA, block->device));
  }

  void* getBaseAllocation(Block* block, size_t* outSize) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    TORCH_CHECK(
        !block->expandable_segment_,
        "Tensors allocated with expandable_segments:True cannot be shared between processes. Consider using expandable_segments:False in data loading workers via torch.cuda.memory._set_allocator_settings('expandable_segments:False')");
    while (block->prev) {
      block = block->prev;
    }
    void* basePtr = block->ptr;
    if (outSize) {
      size_t size = 0;
      while (block) {
        size += block->size;
        block = block->next;
      }
      *outSize = size;
    }
    return basePtr;
  }

  ShareableHandle shareIpcHandle(Block* block) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    std::ostringstream ss;
    ss.put(SHAREABLE_HANDLE_VERSION);
    ptrdiff_t offset = 0;
    if (!block->expandable_segment_) {
      ss.put(SHAREABLE_CUDA_MALLOC);
      Block* base_block = block;
      while (base_block->prev) {
        base_block = base_block->prev;
      }
      offset = (char*)block->ptr - (char*)base_block->ptr;
      cudaIpcMemHandle_t handle;
      C10_CUDA_CHECK(cudaIpcGetMemHandle(&handle, base_block->ptr));
      ss.write((char*)&handle, CUDA_IPC_HANDLE_SIZE);
    } else {
      ss.put(SHAREABLE_CUDA_EXPANDABLE_SEGMENT);
      auto full_range = block->expandable_segment_->share(
          SegmentRange(block->ptr, block->size), ss);
      offset = (char*)block->ptr - (char*)full_range.ptr;
    }
    return ShareableHandle{offset, ss.str()};
  }

  void recordStream(Block* block, cuda::CUDAStream stream) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    if (stream.stream() == block->stream) {
      // ignore uses on the allocation stream, since those don't require any
      // special synchronization
      return;
    }
    block->stream_uses.insert(stream);
    if (C10_UNLIKELY(!captures_underway.empty())) {
      block_to_cudagraph_stream_uses[block].insert(stream);
    }
  }

  /** get memory fraction limiting maximum allocated memory **/
  double getMemoryFraction() {
    if (!set_fraction) {
      return 1.0;
    }

    size_t device_free = 0;
    size_t device_total = 0;
    C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
    return static_cast<double>(allowed_memory_maximum) /
        static_cast<double>(device_total);
  }

  /** set memory fraction to limit maximum allocated memory **/
  void setMemoryFraction(double fraction) {
    size_t device_free = 0;
    size_t device_total = 0;
    C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
    allowed_memory_maximum =
        static_cast<size_t>(fraction * static_cast<double>(device_total));
    set_fraction = true;
  }

  /** returns cached blocks to the system allocator **/
  void emptyCache() {
    auto context = maybeGatherContext(RecordContext::ALL);
    std::lock_guard<std::recursive_mutex> lock(mutex);
    release_cached_blocks(context);
  }

  /** Retrieves size of largest unused block held by the memory cache **/
  void cacheInfo(size_t* largest) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    if (*largest ==
        0) { // make an initial guess if a zero *largest is passed in
      size_t tmp_bytes = 0;
      C10_CUDA_CHECK(cudaMemGetInfo(
          largest, // Use free memory as an optimistic initial guess of *largest
          &tmp_bytes));
    }
    cache_info_aux(large_blocks, largest);
    cache_info_aux(small_blocks, largest);
    for (const auto& gp : graph_pools) {
      cache_info_aux(gp.second->large_blocks, largest);
      cache_info_aux(gp.second->small_blocks, largest);
    }
  }

  /** Returns a copy of the memory allocator stats **/
  DeviceStats getStats() {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    return stats;
  }

  /** Resets the historical accumulation stats for the device **/
  void resetAccumulatedStats() {
    std::lock_guard<std::recursive_mutex> lock(mutex);

    for (const auto statType :
         c10::irange(static_cast<size_t>(StatType::NUM_TYPES))) {
      stats.allocation[statType].reset_accumulated();
      stats.segment[statType].reset_accumulated();
      stats.active[statType].reset_accumulated();
      stats.inactive_split[statType].reset_accumulated();
      stats.allocated_bytes[statType].reset_accumulated();
      stats.reserved_bytes[statType].reset_accumulated();
      stats.active_bytes[statType].reset_accumulated();
      stats.inactive_split_bytes[statType].reset_accumulated();
      stats.requested_bytes[statType].reset_accumulated();
    }

    stats.num_alloc_retries = 0;
    stats.num_ooms = 0;
    stats.num_sync_all_streams = 0;
    stats.num_device_alloc = 0;
    stats.num_device_free = 0;
    stats.oversize_allocations.reset_accumulated();
    stats.oversize_segments.reset_accumulated();
  }

  /** Resets the historical peak stats for the device **/
  void resetPeakStats() {
    std::lock_guard<std::recursive_mutex> lock(mutex);

    for (const auto statType :
         c10::irange(static_cast<size_t>(StatType::NUM_TYPES))) {
      stats.allocation[statType].reset_peak();
      stats.segment[statType].reset_peak();
      stats.active[statType].reset_peak();
      stats.inactive_split[statType].reset_peak();
      stats.allocated_bytes[statType].reset_peak();
      stats.reserved_bytes[statType].reset_peak();
      stats.active_bytes[statType].reset_peak();
      stats.inactive_split_bytes[statType].reset_peak();
      stats.requested_bytes[statType].reset_peak();
    }
    stats.oversize_allocations.reset_peak();
    stats.oversize_segments.reset_peak();
  }

  /* Checkpoint the state of a private pool necessary to return it to its
   * current state */
  std::unique_ptr<PrivatePoolState> getCheckpointState(MempoolId_t id) {
    auto context = maybeGatherContext(RecordContext::ALL);
    std::lock_guard<std::recursive_mutex> lock(mutex);
    insert_events_deferred_until_no_capture(context);

    auto pool = graph_pools.find(id);
    if (pool != graph_pools.end()) {
      auto private_pool_head_blocks =
          get_private_pool_head_blocks(pool->second.get());
      return std::make_unique<PrivatePoolState>(id, private_pool_head_blocks);
    } else if (graph_pools_freeable.count(id)) {
      TORCH_CHECK(false, "Not expected to checkpoint freeable graph");
    } else {
      TORCH_CHECK(false, "Could not find pool of id");
    }
  }

  void freeBlocksAllocatedToPool(PrivatePool* private_pool, RestoreResult& rr) {
    auto pool_blocks = get_private_pool_head_blocks(private_pool);

    std::vector<Block*> head_blocks;
    for (Block* block : pool_blocks) {
      if (block->prev == nullptr) {
        head_blocks.push_back(block);
      }
    }

    for (Block* block : head_blocks) {
      Block* curr = block;

      while (curr) {
        // When we free a block, its pointer should never change
        // only its adjacent blocks, so free, then look at pointer
        if (curr->allocated) {
          TORCH_CHECK(
              curr->event_count == 0,
              "Events should have synchronized when setting checkpointed block");
          rr.allocations_freed.push_back(curr->ptr);
          free(curr);
          TORCH_CHECK(!curr->allocated)
        }
        curr = curr->next;
      }
    }

    for (Block* b : get_private_pool_head_blocks(private_pool)) {
      Block* curr = b;
      while (curr) {
        TORCH_CHECK(!curr->allocated);
        curr = curr->next;
      }
    }
  }

  // checkpoint the state of an allocation that may have been
  // split into multiple blocks
  void setSegmentStateToCheckpoint(
      Block* block,
      SegmentState& segment,
      const std::shared_ptr<GatheredContext>& context,
      RestoreResult& rr) {
    Block* curr_block = block;
    Block* last_block = block;

    TORCH_INTERNAL_ASSERT(block->pool);
    BlockPool& pool = *block->pool;
    const auto segment_len = segment.blocks.size();

    // allocate all blocks in the segment
    for (size_t i = 0; i < segment_len; ++i) {
      // The last block in every expandable segment is the remaining amount of
      // available unmapped virtual address space. We shouldn't change it but
      // instead check it is correctly formed then skip over allocating it.
      if (i == segment_len - 1 && curr_block->expandable_segment_) {
        TORCH_CHECK(curr_block->next == nullptr);
        TORCH_CHECK(!curr_block->mapped);
        TORCH_CHECK(curr_block->allocated == false);
        continue;
      }

      auto& block_state = segment.blocks.at(i);
      AllocParams params(
          block_state.device,
          block_state.size,
          block_state.stream,
          &pool,
          block_state.size,
          stats);
      pool.blocks.erase(curr_block);
      params.block = curr_block;
      params.stat_types = get_stat_types_for_pool(pool);

      // splitting a block depends on `max_split_size`, which may have changed
      // between when checkpoint was taken and now, so we make sure to recreate
      // the behavior from the checkpoint. Keep splitting as long as there is
      // space left in the block because the block is already the size of how it
      // appears in the segment, so any leftover space belongs to the next
      // block.
      bool split = curr_block->size > block_state.size;

      // curr_block will become next pointer if it is split, so reassign with
      // the returned value
      curr_block = alloc_found_block(params, block_state.size, context, split);

      TORCH_CHECK(curr_block->ptr == block_state.ptr);
      TORCH_CHECK(curr_block->size == block_state.size);

      last_block = curr_block;
      curr_block = curr_block->next;

      TORCH_CHECK((curr_block != nullptr) == ((i + 1) < (segment_len)));
    }

    while (last_block->prev) {
      last_block = last_block->prev;
    }

    // free blocks that are not allocated in the checkpoint
    curr_block = last_block;

    for (size_t i = 0; i < segment_len; ++i, curr_block = curr_block->next) {
      if (i == segment_len - 1 && curr_block->expandable_segment_) {
        TORCH_CHECK(curr_block->next == nullptr);
        TORCH_CHECK(!curr_block->mapped);
        TORCH_CHECK(curr_block->allocated == false);
        continue;
      }

      auto& block_state = segment.blocks.at(i);
      TORCH_INTERNAL_ASSERT(curr_block != nullptr);

      if (block_state.allocated) {
        rr.allocations_created.push_back(curr_block);
        continue;
      }

      free(curr_block);

      TORCH_CHECK(curr_block->ptr == block_state.ptr);
      TORCH_CHECK(curr_block->allocated == block_state.allocated);
      TORCH_CHECK(curr_block->size == block_state.size);
    }
  }

  /**
   * Note [Checkpointing PrivatePoolState]
   *
   * Refer above to Note [Interaction with CUDA graph capture]. Allocations made
   * during graph capture are made from a separate private pool. During graph
   * capture allocations behave as usual. During graph replay the allocator
   * state does not change even as new tensors are created. The private pool
   * will not free its blocks to the main caching allocator until cuda graph use
   * is finished to prevent an allocation from eager clobbering the memory from
   * a live but unaccounted for tensor that was created during replay.
   *
   * `make_graphed_callables`, a series of separate callables chained in
   * successive cuda graphs, can share a memory pool because after a cuda graph
   * recording the allocations in the shared private pool exactly reflect the
   * tensors that are allocated.
   *
   * We would like to extend callable chaining to support a graphed callable
   * tree. In this scenario, we have a tree of callable chains which will be
   * captured with cuda graphs. In the diagram below, we have a tree with four
   * callables, A, B, C, and D. Suppose we have captured, and subsequently
   * replayed, A, B, and C. Then on a new invocation, we replay A and B, but
   * would now like to record D. At this point the private pool will not reflect
   * any of the live tensors created during graph replay. Allocations made
   * during a new recording with the pool could overwrite those live tensors.
   *
   * In order to record a new graph capture after replaying prior callables in
   * the tree, we need the allocator to reflect the state of the live tensors.
   * We checkpoint the state of the private pool after each recording, and then
   * reapply it when we are starting a new recording chain. Additionally, we
   * must free the allocations for any tensors that died between the end of our
   * previous graph replaying and our new recording. All of the allocated
   * segments that existed in the checkpointed state must still exist in the
   * pool. There may also exist new allocated blocks.
   * (TODO : link note [live tensors between iterations] when it exists). For
   * every block that is currently allocated but no allocated in the snapshot,
   * we will return a pointer to their block.
   *.
   *
   *
   *  ---------------> A ---------------> B ---------------> C
   *                                      |
   *                                      |
   *                                      |
   *                                      |
   *                                      â•° ---------------> D
   */
  RestoreResult setCheckpointPoolState(PrivatePoolState& pps) {
    // To reset the caching allocator state we will
    // - Free all the blocks currently allocated to the pool (see [live tensors
    // between iterations])
    // - Allocate all the blocks in a checkpointed segment, whether they are
    // live or not
    // - Free the blocks in a checkpointed segment which are not live
    // This could be optimized, but it nicely reuses exiting apis, and this
    // is not on the hot path.

    // following `done outside the lock because we don't know what locks the
    // recorder needs to have...`

    std::shared_ptr<GatheredContext> context =
        maybeGatherContext(RecordContext::STATE);

    std::lock_guard<std::recursive_mutex> lock(mutex);

    RestoreResult rr;

    TORCH_CHECK(
        !graph_pools_freeable.count(pps.owner_id),
        "Not expected to checkpoint freeable graph");

    auto pool = graph_pools.find(pps.owner_id);
    TORCH_CHECK(pool != graph_pools.end(), "Could not find private pool id");

    PrivatePool* private_pool = pool->second.get();

    freeBlocksAllocatedToPool(private_pool, rr);

    std::unordered_map<void*, Block*> ptrs_to_blocks;
    // at this point, all of the blocks should be free, so they will all be in
    // the block set
    for (Block* block : private_pool->small_blocks.blocks) {
      ptrs_to_blocks[block->ptr] = block;
    }
    for (Block* block : private_pool->large_blocks.blocks) {
      ptrs_to_blocks[block->ptr] = block;
    }

    for (auto& segment : pps.segments) {
      auto ptr = segment.blocks.at(0).ptr;
      TORCH_CHECK(ptrs_to_blocks.count(ptr), " could not find ", ptr)
      auto block = ptrs_to_blocks[ptr];

      setSegmentStateToCheckpoint(block, segment, context, rr);
    }
    return rr;
  }

  /** Dump a complete snapshot of the memory held by the allocator. Potentially
   * VERY expensive. **/
  std::vector<SegmentInfo> snapshot() {
    std::lock_guard<std::recursive_mutex> lock(mutex);

    std::unordered_map<PrivatePool*, MempoolId_t> pool_to_id;
    pool_to_id.reserve(graph_pools.size() + graph_pools_freeable.size());
    std::vector<Block*> all_blocks;
    MempoolId_t mempool_id = {0, 0};

    auto active_mempool = MemPoolContext::getActiveMemPool();
    if (active_mempool) {
      mempool_id = active_mempool->id();
    }

    if (mempool_id.first != 0 || mempool_id.second != 0) {
      // If there is an active mempool, we find the corresponding PrivatePool
      // in graph_pools and only return the blocks from it.
      auto pool = graph_pools.find(mempool_id);
      if (pool != graph_pools.end()) {
        pool_to_id[pool->second.get()] = pool->first;
        all_blocks = get_private_pool_head_blocks(pool->second.get());
      }
      auto pool_freeable = graph_pools_freeable.find(mempool_id);
      if (pool_freeable != graph_pools_freeable.end()) {
        pool_to_id[pool_freeable->second] = pool_freeable->first;
      }
    } else {
      // When snapshot is called outside a MemPoolContext, we return
      // all the blocks in the CUDACachingAllocator (as returned by
      // get_all_blocks).
      for (const auto& pair : graph_pools) {
        pool_to_id[pair.second.get()] = pair.first;
      }
      for (const auto& pair : graph_pools_freeable) {
        pool_to_id[pair.second] = pair.first;
      }
      all_blocks = get_all_blocks();
    }

    size_t total_active = 0;
    std::vector<SegmentInfo> result;

    for (const Block* const head_block : all_blocks) {
      // For expandable segments, we report one segment for each contiguous
      // mapped range of memory
      if (head_block->prev && head_block->prev->mapped) {
        continue;
      }
      result.emplace_back();
      SegmentInfo& segment_info = result.back();
      segment_info.device = head_block->device;
      segment_info.address = reinterpret_cast<size_t>(head_block->ptr);
      segment_info.stream = head_block->stream;
      segment_info.is_large = (!head_block->pool->is_small);
      segment_info.is_expandable = head_block->expandable_segment_;
      segment_info.context_when_allocated =
          head_block->context_when_segment_allocated;
      auto id = pool_to_id.find(head_block->pool->owner_PrivatePool);
      if (id != pool_to_id.end()) {
        segment_info.owner_private_pool_id = id->second;
      }

      const Block* block = head_block;
      while (block != nullptr && block->mapped) {
        segment_info.blocks.emplace_back();
        BlockInfo& block_info = segment_info.blocks.back();

        block_info.size = block->size;
        block_info.requested_size = block->requested_size;
        block_info.allocated = block->allocated;
        block_info.active = block->allocated || (block->event_count > 0) ||
            !block->stream_uses.empty();

        segment_info.total_size += block_info.size;
        if (block_info.allocated) {
          segment_info.allocated_size += block_info.size;
        }
        if (block_info.active) {
          segment_info.active_size += block_info.size;
          segment_info.requested_size += block_info.requested_size;
        }
        block_info.context_when_allocated = block->context_when_allocated;
        block = block->next;
      }
      total_active += segment_info.active_size;
    }

    std::sort(
        result.begin(),
        result.end(),
        [](const SegmentInfo& a, const SegmentInfo& b) {
          return a.address < b.address;
        });

    record_trace(TraceEntry::SNAPSHOT, 0, total_active, nullptr, 0, nullptr);
    return result;
  }

  std::vector<TraceEntry> trace(
      const std::function<time_t(approx_time_t)>& tsc_to_us) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    std::vector<TraceEntry> result;
    alloc_buffer.getEntries(result);

    // Convert all the timestamps from tsc to epoch time in microseconds.
    for (auto& te : result) {
      te.time_.t_ = tsc_to_us(te.time_.approx_t_);
    }
    return result;
  }

  // This function takes the size and number of divisions argument and rounds
  // up the size argument for the nearest power-of-2 division.
  // For example, if we need to round-up 1200 and number of divisions is 4,
  // the size 1200 lies between 1024 and 2048 and if we do 4 divisions between
  // them, the values are 1024, 1280, 1536, and 1792. So the function will
  // return 1280 as the nearest ceiling of power-2 divison.
  static size_t roundup_power2_next_division(size_t size, size_t divisions) {
    if (llvm::isPowerOf2_64(size)) {
      return size;
    }

    TORCH_CHECK(divisions >= 2, "Only 2 or more divisions are supported");

    // divide the space between these 2's power into equal divisions
    // If division is zero, return the power-of-2 ceiling.
    size_t power2_floor = llvm::PowerOf2Floor(size);
    size_t power2_divison =
        power2_floor >> (63 - llvm::countLeadingZeros(divisions));
    if (C10_UNLIKELY(power2_divison == 0)) {
      return (power2_floor << 1);
    }
    size_t round_size_floor = size & (~(power2_divison - 1));
    return (round_size_floor == size) ? size
                                      : round_size_floor + power2_divison;
  }

  static size_t round_size(size_t size) {
    if (size < kMinBlockSize) {
      return kMinBlockSize;
    } else {
      auto divisions = CUDAAllocatorConfig::roundup_power2_divisions(size);
      if (divisions > 1 && size > (kMinBlockSize * divisions)) {
        return roundup_power2_next_division(size, divisions);
      } else {
        return kMinBlockSize * ((size + kMinBlockSize - 1) / kMinBlockSize);
      }
    }
  }

  void ensureExistsAndIncrefPool(MempoolId_t mempool_id) {
    // Create a PrivatePool object if it does not exist yet
    // and increment its use_count
    std::lock_guard<std::recursive_mutex> lock(mutex);
    ensure_exists_and_incref_pool(mempool_id);
  }

  // See Note [Interaction with CUDA graph capture]

  // Called by CUDAGraph::capture_begin
  void beginAllocateToPool(
      MempoolId_t mempool_id,
      std::function<bool(cudaStream_t)> filter) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    ensure_exists_and_incref_pool(mempool_id);
    for (auto it2 = captures_underway.begin(); it2 != captures_underway.end();
         ++it2) {
      TORCH_CHECK(
          it2->first != mempool_id,
          "beginAllocateToPool: already recording to mempool_id");
    }
    captures_underway.emplace_back(mempool_id, std::move(filter));
  }

  // Called by CUDAGraph::capture_end
  void endAllocateToPool(MempoolId_t mempool_id) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    for (auto it = captures_underway.begin(); it != captures_underway.end();
         ++it) {
      if (it->first == mempool_id) {
        captures_underway.erase(it);
        return;
      }
    }
    TORCH_CHECK(
        false, "endAllocatePool: not currently recording to mempool_id");
  }

  // Called by CUDAGraph::reset and MemPool::~MemPool()
  void releasePool(MempoolId_t mempool_id) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    // The instantiated cudaGraphExec_t has been destroyed. We can't blindly
    // delete and cudaFree the mempool its capture used, because
    //  1. other graph(s) might share the same pool
    //  2. the user might still hold references to output tensors allocated
    //  during capture.
    // To handle 1 and 2, we track the number of graphs using this particular
    // mempool. When the count reaches 0, we tell free_cached_blocks it may now
    // cudaFree blocks from this graph's pool when it discovers they're unused
    // (unsplit).
    auto pp = get_private_pool(mempool_id);
    auto uc = --(pp->use_count);
    TORCH_INTERNAL_ASSERT(uc >= 0);
    if (uc == 0) {
      // Allows free_cached_blocks to begin cudaFreeing this pool's memory,
      // and makes sure this pool wasn't somehow made freeable already.
      // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
      bool inserted = graph_pools_freeable.insert({mempool_id, pp}).second;
      TORCH_INTERNAL_ASSERT(inserted);
    }
  }

  int getPoolUseCount(MempoolId_t mempool_id) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    auto pp = get_private_pool(mempool_id);
    return pp->use_count;
  }

  void addPeerAccess(c10::DeviceIndex dev_to_access) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    if (std::find(
            devices_with_peer_access_.begin(),
            devices_with_peer_access_.end(),
            dev_to_access) != devices_with_peer_access_.end()) {
      return;
    }
    devices_with_peer_access_.push_back(dev_to_access);
    for (auto& es : expandable_segments_) {
      es->addPeer(dev_to_access);
    }
  }
  std::vector<c10::DeviceIndex> peers() const {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    return devices_with_peer_access_;
  }

  bool hasAllocatedExpandableSegments() const {
    return !expandable_segments_.empty();
  }

 private:
  // All private methods do not acquire the allocator mutex.

  std::vector<Block*> get_all_blocks() const {
    std::vector<Block*> blocks;
    blocks.insert(
        blocks.end(), small_blocks.blocks.begin(), small_blocks.blocks.end());
    blocks.insert(
        blocks.end(), large_blocks.blocks.begin(), large_blocks.blocks.end());
    for (const auto& gp : graph_pools) {
      blocks.insert(
          blocks.end(),
          gp.second->small_blocks.blocks.begin(),
          gp.second->small_blocks.blocks.end());
      blocks.insert(
          blocks.end(),
          gp.second->large_blocks.blocks.begin(),
          gp.second->large_blocks.blocks.end());
    }
    blocks.insert(blocks.end(), active_blocks.begin(), active_blocks.end());
    return blocks;
  }

  std::vector<Block*> get_private_pool_head_blocks(PrivatePool* pool) const {
    std::vector<Block*> blocks;
    for (Block* b : active_blocks) {
      if ((b->pool == &pool->small_blocks || b->pool == &pool->large_blocks) &&
          b->prev == nullptr) {
        blocks.push_back(b);
      }
    }

    for (Block* b : pool->small_blocks.blocks) {
      if (b->prev == nullptr) {
        blocks.push_back(b);
      }
    }
    for (Block* b : pool->large_blocks.blocks) {
      if (b->prev == nullptr) {
        blocks.push_back(b);
      }
    }

    return blocks;
  }

  void ensure_exists_and_incref_pool(MempoolId_t mempool_id) {
    auto it = graph_pools.find(mempool_id);
    if (it == graph_pools.end()) {
      // mempool_id does not reference an existing pool.
      // Make a new pool for CUDAGraph capture or torch.cuda.use_mem_pool
      // usage. use_count is initially 1, which means the pool is
      // being used since somebody called ensureExistsAndIncrefPool.
      graph_pools.emplace(mempool_id, std::make_unique<PrivatePool>());
    } else {
      // mempool_id references an existing pool, which the current CUDAGraph
      // capture or torch.cuda.use_mem_pool will
      // share. Check this pool is live (at least one other capture already
      // references it). Increment it to establish the usage.
      TORCH_INTERNAL_ASSERT(it->second->use_count > 0);
      it->second->use_count++;
    }
  }

  PrivatePool* get_private_pool(MempoolId_t mempool_id) {
    auto it = graph_pools.find(mempool_id);
    TORCH_INTERNAL_ASSERT(it != graph_pools.end());
    return it->second.get();
  }

  // returns the smallest possible address in any segment
  // where there is enough free address space to fit size
  // may be composed of free and unmapped segments
  Block* find_expandable_block(
      c10::DeviceIndex device,
      cudaStream_t stream,
      BlockPool* pool,
      size_t size) {
    Block key(device, stream, 0);

    auto allocatable = [](Block* b) {
      return b && !b->allocated && b->event_count == 0 &&
          b->stream_uses.empty();
    };
    auto has_available_address_space = [&](Block* b) {
      size_t bytes = 0;
      while (bytes < size && allocatable(b)) {
        bytes += b->size;
        b = b->next;
      }
      return bytes >= size;
    };
    for (auto it = pool->unmapped.lower_bound(&key);
         it != pool->unmapped.end() && (*it)->stream == stream;
         ++it) {
      Block* c = *it;
      // we found the lowest address of an unmapped segment
      // but there might be a free segment we can also use
      // right before it
      if (allocatable(c->prev)) {
        c = c->prev;
      }
      if (has_available_address_space(c)) {
        return c;
      }
    }
    auto segment_size = pool->is_small ? kSmallBuffer : kLargeBuffer;
    cudaDeviceProp prop{};
    C10_CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
    // we allocate enough address space for 1 1/8 the total memory on the GPU.
    // This allows for some cases where we have to unmap pages earlier in the
    // segment to put them at the end.
    size_t address_space_size = prop.totalGlobalMem + prop.totalGlobalMem / 8;

    expandable_segments_.emplace_back(new ExpandableSegment(
        device,
        stream,
        address_space_size,
        segment_size,
        devices_with_peer_access_));

    ExpandableSegment* es = expandable_segments_.back();
    Block* candidate = new Block(device, stream, es->size(), pool, es->ptr());
    candidate->mapped = false;
    candidate->expandable_segment_ = es;
    pool->unmapped.insert(candidate);
    return candidate;
  }

  bool map_block(
      Block* to_map,
      size_t size,
      const std::shared_ptr<GatheredContext>& ctx) {
    TORCH_INTERNAL_ASSERT(!to_map->mapped && size <= to_map->size);
    TORCH_INTERNAL_ASSERT(
        !to_map->context_when_allocated); // unmapped blocks should not keep
                                          // history
    auto mapped_range =
        to_map->expandable_segment_->map(SegmentRange{to_map->ptr, size});
    // failed to map the memory
    if (mapped_range.size == 0) {
      return false;
    }
    TORCH_INTERNAL_ASSERT(
        mapped_range.ptr == to_map->ptr && mapped_range.size >= size);

    BlockPool& pool = *to_map->pool;
    pool.unmapped.erase(to_map);
    to_map->mapped = true;

    if (mapped_range.size < to_map->size) {
      // to_map -> remaining -> to_map->next(?)
      Block* remaining = new Block(
          to_map->device,
          to_map->stream,
          to_map->size - mapped_range.size,
          &pool,
          static_cast<char*>(to_map->ptr) + mapped_range.size);
      remaining->mapped = false;
      remaining->expandable_segment_ = to_map->expandable_segment_;
      remaining->splice(to_map, to_map->next);
      pool.unmapped.insert(remaining);
      to_map->size = mapped_range.size;
    }

    try_merge_blocks(to_map, to_map->prev, pool);
    try_merge_blocks(to_map, to_map->next, pool);

    pool.insert_into_blocks(to_map);

    // update statistics
    total_allocated_memory += mapped_range.size;
    StatTypes stat_types = get_stat_types_for_pool(*to_map->pool);
    for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
      stats.reserved_bytes[stat_type].increase(mapped_range.size);
    });
    auto reserved_bytes_gauge =
        STATIC_GAUGE(pytorch.CUDACachingAllocator.reserved_bytes);
    reserved_bytes_gauge.record(
        stats.reserved_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
            .current);

    stats.num_device_alloc++;
    record_trace(
        TraceEntry::SEGMENT_MAP,
        int64_t(mapped_range.ptr),
        mapped_range.size,
        to_map->stream,
        to_map->device,
        ctx);
    if (!to_map->prev && !to_map->context_when_segment_allocated) {
      to_map->context_when_segment_allocated = ctx;
    }

    return true;
  }

  Block* try_allocate_expandable_block(
      c10::DeviceIndex device,
      cudaStream_t stream,
      BlockPool* pool,
      size_t size,
      const std::shared_ptr<GatheredContext>& ctx) {
    Block* candidate = find_expandable_block(device, stream, pool, size);
    // Candidate is now a list free/unmapped blocks with at least size room:
    // unmapped -> null
    // unmapped -> free -> *
    // free -> unmapped -> *

    if (!candidate->mapped &&
        !map_block(candidate, std::min(candidate->size, size), ctx)) {
      return nullptr;
    }
    TORCH_INTERNAL_ASSERT(candidate->mapped);

    while (candidate->size < size) {
      // invariant: free -> unmapped -> *
      // map_block will map some of unmapped and merge with free
      auto remaining = size - candidate->size;
      auto new_candidate = candidate->next;
      if (!map_block(
              new_candidate, std::min(remaining, candidate->next->size), ctx)) {
        return nullptr;
      }
      candidate = new_candidate;
    }
    pool->blocks.erase(candidate);
    return candidate;
  }

  /** moves a block into a pool of cached free blocks */
  void free_block(
      Block* block,
      const std::shared_ptr<GatheredContext>& context) {
    TORCH_INTERNAL_ASSERT(
        !block->allocated && block->event_count == 0 &&
        block->stream_uses.empty());

    record_trace(
        TraceEntry::FREE_COMPLETED,
        int64_t(block->ptr),
        block->requested_size,
        block->stream,
        block->device,
        context ? context : block->context_when_allocated);

    block->context_when_allocated = nullptr;
    size_t original_block_size = block->size;
    size_t requested_size = block->requested_size;

    auto& pool = *block->pool;
    int64_t net_change_inactive_split_blocks = 0;
    int64_t net_change_inactive_split_size = 0;

    const std::array<Block*, 2> merge_candidates = {block->prev, block->next};
    for (Block* merge_candidate : merge_candidates) {
      const auto subsumed_size = try_merge_blocks(block, merge_candidate, pool);
      if (subsumed_size > 0) {
        net_change_inactive_split_blocks -= 1;
        net_change_inactive_split_size -= static_cast<int64_t>(subsumed_size);
      }
    }

    active_blocks.erase(block);
    // Makes sure the Block* isn't already present in the pool we're freeing it
    // back into.
    // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
    bool inserted = pool.insert_into_blocks(block).second;
    TORCH_INTERNAL_ASSERT(inserted);

    if (block->is_split()) {
      net_change_inactive_split_blocks += 1;
      net_change_inactive_split_size += static_cast<int64_t>(block->size);
    }

    StatTypes stat_types = get_stat_types_for_pool(pool);

    for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
      // inactive_split tries to capture the idea that blocks
      // cannot be freed when requested, but fully free pages
      // of expandable blocks can always be freed.
      // The logic to track this as statistic is pretty involved,
      // so we simply just exclude expandable segments from
      // inactive_split
      if (!block->expandable_segment_) {
        if (net_change_inactive_split_blocks > 0) {
          stats.inactive_split[stat_type].increase(
              static_cast<size_t>(net_change_inactive_split_blocks));
        } else if (net_change_inactive_split_blocks < 0) {
          stats.inactive_split[stat_type].decrease(
              static_cast<size_t>(-net_change_inactive_split_blocks));
        }
        if (net_change_inactive_split_size > 0) {
          stats.inactive_split_bytes[stat_type].increase(
              static_cast<size_t>(net_change_inactive_split_size));
        } else if (net_change_inactive_split_size < 0) {
          stats.inactive_split_bytes[stat_type].decrease(
              static_cast<size_t>(-net_change_inactive_split_size));
        }
      }
      stats.active[stat_type].decrease(1);
      stats.active_bytes[stat_type].decrease(original_block_size);
      stats.requested_bytes[stat_type].decrease(requested_size);
    });
  }

  /** combine previously split blocks. returns the size of the subsumed block,
   * or 0 on failure. */
  size_t try_merge_blocks(Block* dst, Block* src, BlockPool& pool) {
    if (!src || src->allocated || src->event_count > 0 ||
        !src->stream_uses.empty() || dst->mapped != src->mapped) {
      return 0;
    }

    AT_ASSERT(dst->is_split() && src->is_split());

    if (dst->prev == src) { // [src dst]
      dst->ptr = src->ptr;
      dst->prev = src->prev;
      if (dst->prev) {
        dst->prev->next = dst;
      }
      dst->context_when_segment_allocated =
          std::move(src->context_when_segment_allocated);
    } else { // [dest src]
      dst->next = src->next;
      if (dst->next) {
        dst->next->prev = dst;
      }
    }
    const size_t subsumed_size = src->size;
    dst->size += subsumed_size;
    // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
    auto erased =
        src->mapped ? pool.blocks.erase(src) : pool.unmapped.erase(src);
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(erased == 1);
    delete src;

    return subsumed_size;
  }

  BlockPool& get_pool(size_t size, cudaStream_t stream) {
    // captures_underway is a conservative guess that the current stream may be
    // capturing. It's only non-empty if some thread has begun and not yet ended
    // a capture, so it's usually 0, and we can short-circuit
    // cudaStreamCaptureStatus (which does a TLS lookup).
    if (C10_UNLIKELY(!captures_underway.empty())) {
      for (auto& entry : captures_underway) {
        if (entry.second(stream)) {
          auto it1 = graph_pools.find(entry.first);
          TORCH_INTERNAL_ASSERT(it1 != graph_pools.end());
          if (size <= kSmallSize) {
            return it1->second->small_blocks;
          } else {
            return it1->second->large_blocks;
          }
        }
      }
    }
    if (size <= kSmallSize) {
      return small_blocks;
    } else {
      return large_blocks;
    }
  }

  StatTypes get_stat_types_for_pool(const BlockPool& pool) {
    StatTypes stat_types = {false};
    stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
    stat_types[static_cast<size_t>(
        pool.is_small ? StatType::SMALL_POOL : StatType::LARGE_POOL)] = true;
    return stat_types;
  }

  bool should_split(const Block* block, size_t size) {
    size_t remaining = block->size - size;
    if (block->pool->is_small || CUDAAllocatorConfig::expandable_segments()) {
      return remaining >= kMinBlockSize;
    } else {
      return (size < CUDAAllocatorConfig::max_split_size()) &&
          (remaining > kSmallSize);
    }
  }

  static size_t get_allocation_size(size_t size) {
    if (size <= kSmallSize) {
      return kSmallBuffer;
    } else if (size < kMinLargeAlloc) {
      return kLargeBuffer;
    } else {
      return kRoundLarge * ((size + kRoundLarge - 1) / kRoundLarge);
    }
  }

  bool get_free_block(AllocParams& p) {
    BlockPool& pool = *p.pool;

    if (C10_UNLIKELY(
            set_fraction &&
            CUDAAllocatorConfig::garbage_collection_threshold() > 0.0)) {
      // Track block reuse interval only when garbage collection is enabled.
      ++pool.get_free_blocks_call_count;
    }
    auto it = pool.blocks.lower_bound(&p.search_key);
    if (it == pool.blocks.end() || (*it)->stream != p.stream())
      return false;

    if ((*it)->expandable_segment_) {
      if (CUDAAllocatorConfig::expandable_segments()) {
        // if we are allocated to the part of the block that is expandable
        // for the purposes of "best fit" we consider its size to be the size it
        // can expand to, not the size it currently is. This means that we
        // sometimes have to search for blocks with bigger 'size' before
        // choosing this segment.
        auto expandable_size = [](Block* b) {
          return b->size + (b->next && !b->next->mapped ? b->next->size : 0);
        };
        auto next = it;
        next++;
        while ((*it)->expandable_segment_ && next != pool.blocks.end() &&
               (*next)->stream == p.stream() &&
               expandable_size(*next) < expandable_size(*it)) {
          it = next++;
        }
      } else {
        // Rarely expandable segments has been turned off after we have
        // already allocated some blocks as expandable. For instance,
        // since we cannot share expandable memory via IPC, someone might
        // temporarily disable it. In this case we need to honor this request
        // by only finding non-expandable blocks
        do {
          it++;
        } while (it != pool.blocks.end() && (*it)->expandable_segment_ &&
                 (*it)->stream == p.stream());
        if (it == pool.blocks.end() || (*it)->stream != p.stream()) {
          return false;
        }
      }
    }

    // Do not return an oversized block for a large request
    if ((p.size() < CUDAAllocatorConfig::max_split_size()) &&
        ((*it)->size >= CUDAAllocatorConfig::max_split_size()))
      return false;
    // Allow oversized block size to be rounded up but within a limit
    if ((p.size() >= CUDAAllocatorConfig::max_split_size()) &&
        ((*it)->size >=
         p.size() + CUDAAllocatorConfig::max_non_split_rounding_size()))
      return false;
    p.block = *it;
    pool.blocks.erase(it);
    return true;
  }

  bool trigger_free_memory_callbacks(AllocParams& p) {
    bool freed_memory = false;
    for (const auto& name : FreeCudaMemoryCallbacksRegistry()->Keys()) {
      freed_memory |=
          FreeCudaMemoryCallbacksRegistry()->Create(name)->Execute();
    }
    return freed_memory;
  }

  void garbage_collect_cached_blocks(
      const std::shared_ptr<GatheredContext>& context) {
    // Free unused cached blocks to reclaim GPU memory.
    // Unlike release_cached_blocks(), this does not enforce synchronization and
    // therefore should be of less overheads.

    size_t gc_threshold = static_cast<size_t>(
        CUDAAllocatorConfig::garbage_collection_threshold() *
        static_cast<double>(allowed_memory_maximum));
    // No need to trigger GC yet
    if (total_allocated_memory <= gc_threshold) {
      return;
    }
    const auto target_size = total_allocated_memory - gc_threshold;
    size_t gc_reclaimed = 0;

    // Calculate the total age of the free-able blocks. We'll use it later to
    // get "avg age" threshold.
    size_t total_age = 0.0;
    int freeable_block_count = 0;
    for (auto& b : large_blocks.blocks) {
      if (!b->is_split()) {
        total_age += b->gc_count();
        ++freeable_block_count;
      }
    }
    // No free-able blocks?
    if (freeable_block_count == 0) {
      return;
    }

    // Repeat GC until we reach reclaim > target size.
    bool block_freed = true;
    while (gc_reclaimed < target_size && block_freed == true &&
           freeable_block_count > 0) {
      // Free blocks exceeding this age threshold first.
      double age_threshold =
          static_cast<double>(total_age) / freeable_block_count;
      // Stop iteration if we can no longer free a block.
      block_freed = false;

      // Free blocks of > avg age. Don't stop upon reaching the target_size,
      // we don't want this GC to be triggered frequently.
      auto it = large_blocks.blocks.begin();
      while (it != large_blocks.blocks.end()) {
        Block* block = *it;
        ++it;
        if (!block->is_split() && !block->expandable_segment_ &&
            static_cast<double>(block->gc_count()) >= age_threshold) {
          block_freed = true;
          gc_reclaimed += block->size;
          total_age -= block->gc_count(); // Decrement the age
          freeable_block_count--; // One less block that can be freed
          release_block(block, context);
        }
      }
    }
  }

  // This function assumes that global lock has been taken whle calling into
  // this function. We do cudaMalloc sync call in this function which
  // can be expensive while holding the lock. Hence, we pass-in the lock to the
  // function to temporarily release the lock before cudaMalloc call and acquire
  // it back again after the call so that other threads dont get blocked.
  bool alloc_block(
      AllocParams& p,
      bool isRetry,
      const std::shared_ptr<GatheredContext>& ctx,
      std::unique_lock<std::recursive_mutex>& lock) {
    // Defensively checks for preexisting CUDA error state.
    C10_CUDA_CHECK(cudaGetLastError());

    size_t size = p.alloc_size;
    void* ptr = nullptr;

    if (isRetry) {
      stats.num_alloc_retries += 1;
    }
#ifdef FBCODE_CAFFE2
    bool in_fbcode = true;
#else
    bool in_fbcode = false;
#endif

    if (set_fraction &&
        total_allocated_memory + size > allowed_memory_maximum) {
      p.err = cudaErrorMemoryAllocation;
      return false;
      // Temporarily disable checkpointing & cudagraphs internally
    } else if (
        CUDAAllocatorConfig::expandable_segments() &&
        !(in_fbcode && p.pool->owner_PrivatePool)) {
      p.block = try_allocate_expandable_block(
          p.device(), p.stream(), p.pool, p.size(), ctx);
      if (p.block) {
        p.err = cudaSuccess;
        if (p.pool->owner_PrivatePool) {
          // The block is for a CUDA graph's PrivatePool.
          p.pool->owner_PrivatePool->cudaMalloc_count++;
        }
      } else {
        p.err = cudaErrorMemoryAllocation;
      }
      return bool(p.block);
    } else {
      auto active_pool = MemPoolContext::getActiveMemPool();
      if (active_pool && active_pool->allocator() &&
          p.pool->owner_PrivatePool) {
        // Ensure that active_pool and p.pool are the same
        auto pp = get_private_pool(active_pool->id());
        TORCH_INTERNAL_ASSERT(pp == p.pool->owner_PrivatePool);
      }
      if (CUDAAllocatorConfig::release_lock_on_cudamalloc()) {
        // At scope exit, acquire the lock again. This provides safety against
        // any potential exceptions in the cudaMallocMaybeCapturing function.
        auto sg = c10::make_scope_exit([&]() { lock.lock(); });
        lock.unlock();
        p.err = cudaMallocMaybeCapturing(&ptr, size, p);
      } else {
        p.err = cudaMallocMaybeCapturing(&ptr, size, p);
      }
      if (CUDAAllocatorConfig::release_lock_on_cudamalloc()) {
        TORCH_CHECK(
            lock.owns_lock(), "Failed to acquire lock after cudaMalloc");
      }

      if (p.err != cudaSuccess) {
        if (p.err == cudaErrorMemoryAllocation) {
          // If this is the first attempt (!isRetry), we can forgive and clear
          // CUDA's internal error state.
          //
          // If this is the second attempt (isRetry), malloc's TORCH_CHECK_WITH
          // will take over to throw a helpful exception. The user can choose
          // to catch the exception, free some stuff in their script, and
          // attempt the allocation again. In this case, we can also forgive and
          // clear CUDA's internal error state.
          (void)cudaGetLastError();
        } else {
          // If the error's unrelated to memory allocation, we should throw
          // immediately.
          C10_CUDA_CHECK(p.err);
        }
        return false;
      }
    }

    if (p.pool->owner_PrivatePool) {
      // The block is for a CUDA graph's PrivatePool.
      p.pool->owner_PrivatePool->cudaMalloc_count++;
    }

    total_allocated_memory += size;
    p.block = new Block(p.device(), p.stream(), size, p.pool, (char*)ptr);
    for_each_selected_stat_type(p.stat_types, [&](size_t stat_type) {
      stats.segment[stat_type].increase(1);
      stats.reserved_bytes[stat_type].increase(size);
    });
    if (size >= CUDAAllocatorConfig::max_split_size())
      stats.oversize_segments.increase(1);
    auto reserved_bytes_gauge =
        STATIC_GAUGE(pytorch.CUDACachingAllocator.reserved_bytes);
    reserved_bytes_gauge.record(
        stats.reserved_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
            .current);

    // p.block came from new, not cudaMalloc. It should not be nullptr here.
    TORCH_INTERNAL_ASSERT(p.block != nullptr && p.block->ptr != nullptr);
    stats.num_device_alloc++;
    record_trace(
        TraceEntry::SEGMENT_ALLOC,
        int64_t(p.block->ptr),
        p.block->size,
        p.stream(),
        p.device(),
        ctx);
    p.block->context_when_segment_allocated = ctx;
    return true;
  }

  /** Free one or more oversize blocks to the system allocator.  But only enough
   * **/
  /** to satisfy the target size **/
  bool release_available_cached_blocks(
      const AllocParams& p,
      const std::shared_ptr<GatheredContext>& context) {
    if (CUDAAllocatorConfig::max_split_size() ==
        std::numeric_limits<size_t>::max())
      return false;
    BlockPool& pool = *p.pool;

    // because of std::unique_ptr, block cannot be trivially copied
    // Use constructor for search key.
    Block key(p.search_key.device, p.search_key.stream, p.search_key.size);
    key.size = (key.size < CUDAAllocatorConfig::max_split_size())
        ? CUDAAllocatorConfig::max_split_size()
        : key.size;
    auto it = pool.blocks.lower_bound(&key);
    if (it == pool.blocks.end() || (*it)->stream != p.stream() ||
        (*it)->expandable_segment_) {
      // No single block is large enough; free multiple oversize blocks,
      // starting with the largest
      if (it == pool.blocks.begin())
        return false;
      size_t totalReleased = 0;
      --it; // Back up one item.  Now on the largest block for the correct
            // stream
      while ((totalReleased < key.size) &&
             ((*it)->size >= CUDAAllocatorConfig::max_split_size()) &&
             ((*it)->stream == p.stream())) {
        auto cur = it;
        bool is_first = cur == pool.blocks.begin();
        if (!is_first) {
          --it;
        }
        if (!(*cur)->expandable_segment_) {
          release_block(*cur, context);
          totalReleased += (*cur)->size;
        }
        if (is_first) {
          break;
        }
      }
      if (totalReleased < key.size)
        return false;
    } else {
      release_block(*it, context);
    }
    return true;
  }

  bool release_cached_blocks(const std::shared_ptr<GatheredContext>& context) {
    MempoolId_t mempool_id = {0, 0};
    auto active_mempool = MemPoolContext::getActiveMemPool();
    if (active_mempool) {
      mempool_id = active_mempool->id();
    }

    if (mempool_id.first == 0 && mempool_id.second == 0) {
      // If there is no active mempool, we work on releasing *all* blocks.

      // First ensure that all blocks that can't currently be allocated due to
      // outstanding events are returned to the pool.
      synchronize_and_free_events(context);

      // Free all non-split cached blocks to system allocator
      release_blocks(large_blocks, context);
      release_blocks(small_blocks, context);
    }

    for (auto it = graph_pools_freeable.begin();
         it != graph_pools_freeable.end();) {
      if (mempool_id.first != 0 || mempool_id.second != 0) {
        if (it->first == mempool_id) {
          // If there is an active mempool, we sync only the events
          // associated with the pool
          synchronize_and_free_events(context, it->second);
        } else {
          // otherwise we move on
          ++it;
          continue;
        }
      }
      // See notifyCaptureDestroy for the strategy here.
      TORCH_INTERNAL_ASSERT(it->second->use_count == 0);
      release_blocks(it->second->small_blocks, context);
      release_blocks(it->second->large_blocks, context);
      if (it->second->cudaMalloc_count == 0) {
        auto erase_count = graph_pools.erase(it->first);
        TORCH_INTERNAL_ASSERT(erase_count == 1);
        it = graph_pools_freeable.erase(it);
      } else {
        ++it;
      }
    }

    return true;
  }

  void release_expandable_segment(Block* block) {
    TORCH_INTERNAL_ASSERT(
        block->size == block->expandable_segment_->size(),
        "block disagrees with segment");
    TORCH_INTERNAL_ASSERT(!block->mapped);
    auto it = std::find(
        expandable_segments_.begin(),
        expandable_segments_.end(),
        block->expandable_segment_);
    TORCH_INTERNAL_ASSERT(it != expandable_segments_.end());
    expandable_segments_.erase(it);
    block->pool->unmapped.erase(block);
    delete block->expandable_segment_;
    delete block;
  }

  void release_block(
      Block* block,
      const std::shared_ptr<GatheredContext>& context) {
    TORCH_INTERNAL_ASSERT(!block->expandable_segment_);
    stats.num_device_free++;
    record_trace(
        TraceEntry::SEGMENT_FREE,
        int64_t(block->ptr),
        block->size,
        block->stream,
        block->device,
        context ? context : block->context_when_segment_allocated);

    auto* pool = block->pool;
    auto active_pool = MemPoolContext::getActiveMemPool();
    if (active_pool && active_pool->allocator() && pool->owner_PrivatePool) {
      // Ensure that active_pool and pool are the same
      auto pp = get_private_pool(active_pool->id());
      TORCH_INTERNAL_ASSERT(pp == pool->owner_PrivatePool);

      // If there is an active mempool with a given allocator,
      // we use the given allocator's delete function.
      active_pool->allocator()->raw_delete((void*)block->ptr);
    } else {
      C10_CUDA_CHECK(cudaFree((void*)block->ptr));
    }
    total_allocated_memory -= block->size;

    if (pool->owner_PrivatePool) {
      // The cudaFreed block belonged to a CUDA graph's PrivatePool.
      TORCH_INTERNAL_ASSERT(pool->owner_PrivatePool->cudaMalloc_count > 0);
      pool->owner_PrivatePool->cudaMalloc_count--;
    }

    StatTypes stat_types = get_stat_types_for_pool(*pool);
    for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
      stats.segment[stat_type].decrease(1);
      stats.reserved_bytes[stat_type].decrease(block->size);
    });
    auto reserved_bytes_gauge =
        STATIC_GAUGE(pytorch.CUDACachingAllocator.reserved_bytes);
    reserved_bytes_gauge.record(
        stats.reserved_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
            .current);

    if (block->size >= CUDAAllocatorConfig::max_split_size())
      stats.oversize_segments.decrease(1);
    pool->blocks.erase(block);
    delete block;
  }

  void unmap_block(
      Block* block,
      const std::shared_ptr<GatheredContext>& context) {
    auto unmapped = block->expandable_segment_->unmap(
        SegmentRange{block->ptr, block->size});
    if (unmapped.size == 0) {
      return;
    }
    block->pool->blocks.erase(block);

    ptrdiff_t before_size =
        static_cast<char*>(unmapped.ptr) - static_cast<char*>(block->ptr);
    if (before_size > 0) {
      // prev? -> before_free -> block
      Block* before_free = new Block(
          block->device, block->stream, before_size, block->pool, block->ptr);
      before_free->expandable_segment_ = block->expandable_segment_;
      before_free->splice(block->prev, block);
      block->pool->insert_into_blocks(before_free);
    }

    auto after_size = block->size - (before_size + unmapped.size);
    if (after_size > 0) {
      // block -> after_free -> next?
      Block* after_free = new Block(
          block->device,
          block->stream,
          after_size,
          block->pool,
          static_cast<char*>(unmapped.ptr) + unmapped.size);
      after_free->expandable_segment_ = block->expandable_segment_;
      after_free->splice(block, block->next);
      block->pool->insert_into_blocks(after_free);
    }

    block->ptr = unmapped.ptr;
    block->size = unmapped.size;
    block->mapped = false;

    try_merge_blocks(block, block->prev, *block->pool);
    try_merge_blocks(block, block->next, *block->pool);
    block->pool->unmapped.insert(block);

    // update statistics
    total_allocated_memory -= unmapped.size;
    StatTypes stat_types = get_stat_types_for_pool(*block->pool);
    for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
      stats.reserved_bytes[stat_type].decrease(unmapped.size);
    });
    auto reserved_bytes_gauge =
        STATIC_GAUGE(pytorch.CUDACachingAllocator.reserved_bytes);
    reserved_bytes_gauge.record(
        stats.reserved_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
            .current);

    if (block->pool->owner_PrivatePool) {
      // The cudaFreed block belonged to a CUDA graph's PrivatePool.
      TORCH_INTERNAL_ASSERT(
          block->pool->owner_PrivatePool->cudaMalloc_count > 0);
      block->pool->owner_PrivatePool->cudaMalloc_count--;
    }

    stats.num_device_free++;
    record_trace(
        TraceEntry::SEGMENT_UNMAP,
        int64_t(unmapped.ptr),
        unmapped.size,
        block->stream,
        block->device,
        context ? context : block->context_when_segment_allocated);
  }
  void release_blocks(
      BlockPool& pool,
      const std::shared_ptr<GatheredContext>& context) {
    std::vector<Block*> to_unmap;
    // Frees all non-split blocks
    auto it = pool.blocks.begin();
    while (it != pool.blocks.end()) {
      Block* block = *it;
      ++it;
      if (block->expandable_segment_) {
        // unmapping will mutate the free pool
        // so just gather what needs to be freed
        // to avoid invalidating the iterator
        to_unmap.push_back(block);
      } else if (!block->prev && !block->next) {
        release_block(block, context);
      }
    }
    for (Block* block : to_unmap) {
      unmap_block(block, context);
      if (!block->prev && !block->next) {
        release_expandable_segment(block);
      }
    }
  }

  EventPool::Event create_event_internal(c10::DeviceIndex idx) {
    // Leak the event pool to avoid shutdown issues.
    static auto* event_pool = new EventPool();
    return event_pool->get(idx);
  }

  void synchronize_and_free_events(
      const std::shared_ptr<GatheredContext>& context,
      PrivatePool* pool = nullptr) {
    // Synchronize on outstanding events and then free associated blocks.
    stats.num_sync_all_streams++;

    // This function syncs, so capture should not be underway. Might as well
    // make sure capture-deferred end of life events get processed too.
    TORCH_INTERNAL_ASSERT(captures_underway.empty());
    insert_events_deferred_until_no_capture(context);

    for (auto it = cuda_events.begin(); it != cuda_events.end();) {
      for (auto e = it->second.begin(); e != it->second.end();) {
        Block* block = e->second;

        // If a pool was passed, only synchronize the events
        // that are associated with the pool, otherwise move on
        if (pool && block->pool->owner_PrivatePool != pool) {
          ++e;
          continue;
        }

        EventPool::Event event = std::move(e->first);

        C10_CUDA_CHECK(cudaEventSynchronize(*event));

        block->event_count--;
        if (block->event_count == 0) {
          free_block(block, context);
        }
        // We are done with the event, so erase it from the deque
        e = it->second.erase(e);
      }

      // If the events deque is empty, only then erase the
      // cuda event from the events map
      if (it->second.empty()) {
        it = cuda_events.erase(it);
      } else {
        it++;
      }
    }
  }

  void remove_cudagraph_stream_uses(Block* block) {
    // remove stream uses added during cudagraph capture
    // (i.e., block->stream_uses - block->cudagraph_stream_uses)
    if (C10_UNLIKELY(
            block_to_cudagraph_stream_uses.find(block) !=
            block_to_cudagraph_stream_uses.end())) {
      stream_set streams(std::move(block->stream_uses));
      AT_ASSERT(block->stream_uses.empty());
      for (auto& stream : streams) {
        if (block_to_cudagraph_stream_uses[block].find(stream) ==
            block_to_cudagraph_stream_uses[block].end()) {
          block->stream_uses.insert(stream);
        }
      }
      block_to_cudagraph_stream_uses.erase(block);
    }
  }

  void insert_events(Block* block) {
    c10::DeviceIndex prev_device = 0;
    C10_CUDA_CHECK(c10::cuda::GetDevice(&prev_device));

    stream_set streams(std::move(block->stream_uses));
    AT_ASSERT(block->stream_uses.empty());
    for (auto& stream : streams) {
      C10_CUDA_CHECK(c10::cuda::SetDevice(stream.device_index()));

      EventPool::Event event = create_event_internal(stream.device_index());
      C10_CUDA_CHECK(cudaEventRecord(*event, stream.stream()));

      block->event_count++;
      cuda_events[stream].emplace_back(std::move(event), block);
    }

    C10_CUDA_CHECK(c10::cuda::MaybeSetDevice(prev_device));
  }

  void insert_events_deferred_until_no_capture(
      const std::shared_ptr<GatheredContext>& context) {
    if (C10_UNLIKELY(!needs_events_deferred_until_no_capture.empty())) {
      for (auto* block : needs_events_deferred_until_no_capture) {
        TORCH_INTERNAL_ASSERT(!block->stream_uses.empty());
        // only streams recorded before cudagraph will be used to insert events
        // since we know all streams recorded during cudagraph must have
        // completed (refer to Section 3.2.8.7.3.1 Cross-stream Dependencies and
        // Events in CUDA Programming Guide).
        remove_cudagraph_stream_uses(block);
        insert_events(block);
        if (block->event_count == 0) {
          free_block(block, context);
        }
      }
      needs_events_deferred_until_no_capture.clear();
    }
  }

  void process_events(const std::shared_ptr<GatheredContext>& context) {
    insert_events_deferred_until_no_capture(context);

    // Process outstanding cudaEvents. Events that are completed are
    // removed from the queue, and the 'event_count' for the
    // corresponding allocation is decremented. We maintain a separate
    // list of events per stream to avoid head-of-line delays if one
    // or more streams has long-running operations.

    // Iterate over different streams.
    for (auto it = cuda_events.begin(); it != cuda_events.end();) {
      // Iterate over this stream's (event, block) pairs.
      while (!it->second.empty()) {
        auto& e = it->second.front();
        EventPool::Event event = std::move(e.first);
        Block* block = e.second;

        cudaError_t err = C10_CUDA_ERROR_HANDLED(cudaEventQuery(*event));
        if (err == cudaErrorNotReady) {
          // ignore and clear the error if not ready
          (void)cudaGetLastError();
          // Return the ownership of the Event (unique ptr)
          e.first = std::move(event);
          break;
        } else if (err != cudaSuccess) {
          C10_CUDA_CHECK(err);
        }

        block->event_count--;
        if (block->event_count == 0) {
          free_block(block, context);
        }
        it->second.pop_front();
      }

      if (it->second.empty()) {
        it = cuda_events.erase(it);
      } else {
        it++;
      }
    }
  }

  // Iterates over sizes of all memory blocks for given device in given pool
  void cache_info_aux(const BlockPool& pool, size_t* largest) {
    for (const auto& block : pool.blocks) {
      const auto blocksize = block->size;
      if (blocksize > *largest) {
        *largest = blocksize;
      }
    }
  }

  void record_trace(
      TraceEntry::Action action,
      size_t addr,
      size_t size,
      cudaStream_t stream,
      c10::DeviceIndex device,
      std::shared_ptr<GatheredContext> context) {
    if (!record_history && trace_trackers_.empty())
      return;

    auto te = TraceEntry(
        action,
        device,
        addr,
        size,
        stream,
        getApproximateTime(),
        record_context_ >= RecordContext::ALLOC ? std::move(context) : nullptr);

    // Callbacks should not include any Pytorch call
    for (const auto& cb : trace_trackers_) {
      cb(te);
    }

    if (record_history) {
      alloc_buffer.insertEntries(te);
    }
  }
};

// Returns whether to force all allocations to bypass the caching allocator and
// go straight to cudaMalloc.  This setting is useful when debugging GPU memory
// errors, since the caching allocator foils cuda-memcheck.
static bool forceUncachedAllocator() {
  // Allow either CUDA or HIP name for env var for maximum user comfort
  // the CUDA env var avoids being hipified in cuda_to_hip_mappings.py
  static bool has_cuda_env =
      c10::utils::has_env("PYTORCH_NO_CUDA_MEMORY_CACHING");
  static bool has_rocm_env =
      c10::utils::has_env("PYTORCH_NO_HIP_MEMORY_CACHING");
  static bool force_uncached = has_cuda_env || has_rocm_env;
  return force_uncached;
}

static void* uncached_allocate(size_t size) {
  void* devPtr = nullptr;
  // Deliberately don't use cudaMallocMaybeCapturing here, to force an error
  // if someone tries to use forceUncachedAllocator while capturing.
  C10_CUDA_CHECK(cudaMalloc(&devPtr, size));
  const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
  if (C10_UNLIKELY(interp)) {
    (*interp)->trace_gpu_memory_allocation(
        c10::kCUDA, reinterpret_cast<uintptr_t>(devPtr));
  }
  return devPtr;
}

static void uncached_delete(void* ptr) {
  if (TORCH_SDT_IS_ENABLED(free)) {
    TORCH_SDT_WITH_SEMAPHORE(free, ptr);
  }

  const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
  if (C10_UNLIKELY(interp)) {
    (*interp)->trace_gpu_memory_deallocation(
        c10::kCUDA, reinterpret_cast<uintptr_t>(ptr));
  }
  C10_CUDA_CHECK(cudaFree(ptr));
}

static void local_raw_delete(void* ptr);

class NativeCachingAllocator : public CUDAAllocator {
 private:
  // allows this allocator to be turned on and off programmatically
  bool enable_ = true;

  // Shard allocation region to have independent mutexes to reduce contention.
  static constexpr size_t kNumMutexShard = 67;

  // TODO: use std::hardware_destructive_interference_size once available
  struct alignas(64) AlignedMutex {
    std::mutex m;
  };

  std::array<AlignedMutex, kNumMutexShard> mutex;

  // allocated blocks by device pointer
  std::array<ska::flat_hash_map<void*, Block*>, kNumMutexShard>
      allocated_blocks;

  static size_t get_mutex_shard_id(void* ptr) {
    return twang_mix64((size_t)ptr) % kNumMutexShard;
  }

  void add_allocated_block(Block* block) {
    // NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
    const auto mutex_shard_id = get_mutex_shard_id(block->ptr);
    std::lock_guard<std::mutex> lock(mutex[mutex_shard_id].m);
    allocated_blocks[mutex_shard_id][block->ptr] = block;
  }

  // Variables by memory snapshot
  c10::ApproximateClockToUnixTimeConverter clock_converter;
  bool record_history = false;
  RingBuffer<AnnotationEntry> annotation_buffer;

 public:
  std::vector<std::unique_ptr<DeviceCachingAllocator>> device_allocator;

  Block* get_allocated_block(void* ptr, bool remove = false) {
    const auto mutex_shard_id = get_mutex_shard_id(ptr);
    std::lock_guard<std::mutex> lock(mutex[mutex_shard_id].m);
    auto it = allocated_blocks[mutex_shard_id].find(ptr);
    if (it == allocated_blocks[mutex_shard_id].end()) {
      return nullptr;
    }
    Block* block = it->second;
    if (remove) {
      allocated_blocks[mutex_shard_id].erase(it);
    }
    return block;
  }

  void init(int device_count) override {
    const auto size = static_cast<int64_t>(device_allocator.size());
    if (size < device_count) {
      device_allocator.resize(device_count);
      for (const auto i : c10::irange(size, device_count)) {
        device_allocator[i] = std::make_unique<DeviceCachingAllocator>();
      }
    }
  }

  bool initialized() override {
    return !device_allocator.empty();
  }

  /** allocates a block which is safe to use from the provided stream */
  void malloc(
      void** devPtr,
      c10::DeviceIndex device,
      size_t size,
      cudaStream_t stream) {
    TORCH_INTERNAL_ASSERT(
        0 <= device && static_cast<size_t>(device) < device_allocator.size(),
        "Allocator not initialized for device ",
        device,
        ": did you call init?");
    Block* block = device_allocator[device]->malloc(device, size, stream);
    add_allocated_block(block);
    *devPtr = (void*)block->ptr;
    const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
    if (C10_UNLIKELY(interp)) {
      (*interp)->trace_gpu_memory_allocation(
          c10::kCUDA, reinterpret_cast<uintptr_t>(*devPtr));
    }
  }

  void free(void* ptr) {
    if (!ptr) {
      return;
    }
    Block* block = get_allocated_block(ptr, true /* remove */);
    if (!block) {
      TORCH_CHECK(false, "invalid device pointer: ", ptr);
    }
    const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
    if (C10_UNLIKELY(interp)) {
      (*interp)->trace_gpu_memory_deallocation(
          c10::kCUDA, reinterpret_cast<uintptr_t>(block->ptr));
    }
    device_allocator[block->device]->free(block);
  }

  double getMemoryFraction(c10::DeviceIndex device) override {
    TORCH_INTERNAL_ASSERT(
        0 <= device && static_cast<size_t>(device) < device_allocator.size(),
        "Allocator not initialized for device ",
        device,
        ": did you call init?");
    C10_CUDA_CHECK(c10::cuda::SetDevice(device));
    return device_allocator[device]->getMemoryFraction();
  }

  void setMemoryFraction(double fraction, c10::DeviceIndex device) override {
    TORCH_INTERNAL_ASSERT(
        0 <= device && static_cast<size_t>(device) < device_allocator.size(),
        "Allocator not initialized for device ",
        device,
        ": did you call init?");
    TORCH_INTERNAL_ASSERT(
        0 <= fraction && fraction <= 1,
        "invalid fraction:",
        fraction,
        ". Please set within (0, 1).");
    C10_CUDA_CHECK(c10::cuda::SetDevice(device));
    device_allocator[device]->setMemoryFraction(fraction);
  }

  void recordHistory(
      bool enabled,
      CreateContextFn context_recorder,
      size_t alloc_buffer_max_entries,
      RecordContext when) override {
    record_history = enabled;
    annotation_buffer.setMaxEntries(alloc_buffer_max_entries);
    annotation_buffer.clear();
    for (auto& allocator : device_allocator) {
      allocator->recordHistory(
          enabled, context_recorder, alloc_buffer_max_entries, when);
    }
  }

  void recordAnnotation(
      const std::vector<std::pair<std::string, std::string>>& md) override {
    if (!record_history) {
      return;
    }
    c10::DeviceIndex device = 0;
    C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
    auto ae = AnnotationEntry(
        /*device=*/device,
        /*time=*/getApproximateTime());
    for (const auto& md_pair : md) {
      ae.recordUserMetadata(md_pair.first, md_pair.second);
    }
    annotation_buffer.insertEntries(ae);
  }

  bool isHistoryEnabled() override {
    c10::DeviceIndex device = 0;
    C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
    return device_allocator[device]->isHistoryEnabled();
  }

  bool checkPoolLiveAllocations(
      c10::DeviceIndex device,
      MempoolId_t mempool_id,
      const std::unordered_set<void*>& expected_live_allocations) override {
    return device_allocator[device]->checkPoolLiveAllocations(
        mempool_id, expected_live_allocations);
  }

  void attachOutOfMemoryObserver(OutOfMemoryObserver observer) override {
    for (auto& allocator : device_allocator) {
      allocator->attachOutOfMemoryObserver(observer);
    }
  }

  void attachAllocatorTraceTracker(AllocatorTraceTracker tracker) override {
    for (auto& allocator : device_allocator) {
      allocator->attachAllocatorTraceTracker(tracker);
    }
  }

  void emptyCache() override {
    for (auto& da : device_allocator)
      da->emptyCache();
  }

  void enable(bool value) override {
    enable_ = value;
  }

  bool isEnabled() const override {
    return enable_;
  }

  void* getBaseAllocation(void* ptr, size_t* outSize) override {
    Block* block = get_allocated_block(ptr);
    if (!block) {
      TORCH_CHECK(false, "invalid device pointer: ", ptr);
    }
    return device_allocator[block->device]->getBaseAllocation(block, outSize);
  }

  ShareableHandle shareIpcHandle(void* ptr) override {
    Block* block = get_allocated_block(ptr);
    if (!block) {
      TORCH_CHECK(false, "invalid device pointer: ", ptr);
    }
    return device_allocator[block->device]->shareIpcHandle(block);
  }

  void recordStream(const DataPtr& ptr, cuda::CUDAStream stream) override {
    // Empty tensor's storage().data() might be a null ptr. As there is no
    // blocks associated with those tensors, it is fine to do nothing here.
    if (!ptr.get()) {
      return;
    }

    // If a tensor is not allocated by this instance, simply skip
    // This usually happens when CUDA tensors are shared across processes,
    // we have implemented reference counting based sharing mechanism to
    // guarantee tensors won't be accidentally freed by one process while
    // they are still being used in another
    if (ptr.get_deleter() != &local_raw_delete)
      return;

    Block* block = get_allocated_block(ptr.get());
    // block must not be null reaching here
    TORCH_INTERNAL_ASSERT(block != nullptr, "No allocated block can be found");
    device_allocator[block->device]->recordStream(block, stream);
  }

  SnapshotInfo snapshot() override {
    // Set-up converter to convert timestamps from tsc to microseconds.
    auto tsc_to_ns = clock_converter.makeConverter();
    auto tsc_to_us = [=](approx_time_t t_approx) {
      return tsc_to_ns(t_approx) / 1000;
    };

    SnapshotInfo result;

    // Get AnnotationEntry list and convert the timestamps.
    annotation_buffer.getEntries(result.external_annotations);
    for (auto& ae : result.external_annotations) {
      ae.time_.t_ = tsc_to_us(ae.time_.approx_t_);
    }

    // Get the device_traces' TraceEntry lists.
    for (auto& da : device_allocator) {
      result.device_traces.emplace_back(da->trace(tsc_to_us));
      auto snap = da->snapshot();
      result.segments.insert(result.segments.end(), snap.begin(), snap.end());
    }

    auto& md = result.config_metadata;
    md.garbage_collection_threshold =
        CUDAAllocatorConfig::garbage_collection_threshold();
    md.max_split_size = CUDAAllocatorConfig::max_split_size();
    md.pinned_num_register_threads =
        CUDAAllocatorConfig::pinned_num_register_threads();
    md.expandable_segments = CUDAAllocatorConfig::expandable_segments();
    md.release_lock_on_malloc =
        CUDAAllocatorConfig::release_lock_on_cudamalloc();
    md.pinned_use_host_register =
        CUDAAllocatorConfig::pinned_use_cuda_host_register();
    md.last_allocator_settings = CUDAAllocatorConfig::last_allocator_settings();
    md.roundup_power2_divisions =
        CUDAAllocatorConfig::roundup_power2_divisions();

    return result;
  }

  std::shared_ptr<AllocatorState> getCheckpointState(
      c10::DeviceIndex device,
      MempoolId_t id) override {
    return device_allocator[device]->getCheckpointState(id);
  }

  /**
   * @brief Checkpoint the private pool state identified in `as` to its prior
   * state
   *
   * @param device - device of the pool to manipulate
   * @param as - allocator state
   * @param stale_live_storages - storages of tensors which are currently
   * allocated but which will be not be allocated after the checkpoint is set.
   * For these storages we will remove their deleter function.
   * @return CheckpointDelta - Freed Pointers and DataPtrs that contain deleter
   * functions for all allocated blocks in the new checkpoint state.
   */
  CheckpointDelta setCheckpointPoolState(
      c10::DeviceIndex device,
      std::shared_ptr<AllocatorState> as) override {
    std::shared_ptr<PrivatePoolState> pps =
        std::dynamic_pointer_cast<PrivatePoolState>(as);

    TORCH_CHECK(pps, "Expected PrivatePoolState");

    auto rr = device_allocator[device]->setCheckpointPoolState(*pps);

    CheckpointDelta cpd;
    for (void* ptr : rr.allocations_freed) {
      get_allocated_block(ptr, /*remove*/ true);
      cpd.ptrs_freed.push_back(ptr);
    }
    for (Block* block : rr.allocations_created) {
      add_allocated_block(block);
      cpd.dataptrs_allocd.emplace_back(
          block->ptr,
          block->ptr,
          &local_raw_delete,
          Device(DeviceType::CUDA, device));
    }

    return cpd;
  }

  DataPtr allocate(size_t size) override {
    constexpr size_t one_exa_bytes = 1152921504606846976ULL;
    TORCH_CHECK_WITH(
        OutOfMemoryError,
        size < one_exa_bytes,
        "CUDA out of memory. Tried to allocate more than 1EB memory.");
    c10::DeviceIndex device = 0;
    C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
    void* devPtr = nullptr;
    void (*deleteFunc)(void*) = &local_raw_delete;
    CUDAStream stream = cuda::getCurrentCUDAStream(device);

    if (forceUncachedAllocator() || !isEnabled()) {
      deleteFunc = &uncached_delete;
      devPtr = uncached_allocate(size);
    } else {
      if (size != 0) {
        this->malloc(&devPtr, device, size, stream);
      }
    }

    if (size && TORCH_SDT_IS_ENABLED(malloc)) {
      TORCH_SDT_WITH_SEMAPHORE(malloc, devPtr, device, size, stream.id());
    }

    return {devPtr, devPtr, deleteFunc, Device(DeviceType::CUDA, device)};
  }
  DeleterFnPtr raw_deleter() const override {
    if (forceUncachedAllocator() || !isEnabled()) {
      return &uncached_delete;
    } else {
      return &local_raw_delete;
    }
  }
  void cacheInfo(c10::DeviceIndex device, size_t* largestBlock) override {
    device_allocator[device]->cacheInfo(largestBlock);
  }
  void assertValidDevice(c10::DeviceIndex device) {
    const auto device_num = device_allocator.size();
    TORCH_CHECK(
        0 <= device && device < static_cast<int64_t>(device_num),
        "Invalid device argument ",
        device,
        ": did you call init?");
  }

  DeviceStats getDeviceStats(c10::DeviceIndex device) override {
    assertValidDevice(device);
    return device_allocator[device]->getStats();
  }

  void resetAccumulatedStats(c10::DeviceIndex device) override {
    assertValidDevice(device);
    device_allocator[device]->resetAccumulatedStats();
  }

  void resetPeakStats(c10::DeviceIndex device) override {
    assertValidDevice(device);
    device_allocator[device]->resetPeakStats();
  }

  void ensureExistsAndIncrefPool(
      c10::DeviceIndex device,
      MempoolId_t mempool_id) override {
    assertValidDevice(device);
    device_allocator[device]->ensureExistsAndIncrefPool(std::move(mempool_id));
  }

  // CUDAGraph interactions
  void beginAllocateToPool(
      c10::DeviceIndex device,
      MempoolId_t mempool_id,
      std::function<bool(cudaStream_t)> filter) override {
    assertValidDevice(device);
    device_allocator[device]->beginAllocateToPool(
        std::move(mempool_id), std::move(filter));
  }

  void endAllocateToPool(c10::DeviceIndex device, MempoolId_t mempool_id)
      override {
    assertValidDevice(device);
    device_allocator[device]->endAllocateToPool(mempool_id);
  }

  void releasePool(c10::DeviceIndex device, MempoolId_t mempool_id) override {
    assertValidDevice(device);
    device_allocator[device]->releasePool(std::move(mempool_id));
  }

  int getPoolUseCount(c10::DeviceIndex device, MempoolId_t mempool_id)
      override {
    assertValidDevice(device);
    return device_allocator[device]->getPoolUseCount(std::move(mempool_id));
  }

  void* raw_alloc(size_t nbytes) override {
    if (nbytes == 0) {
      return nullptr;
    }
    void* r = nullptr;
    if (forceUncachedAllocator() || !isEnabled()) {
      r = uncached_allocate(nbytes);
    } else {
      c10::DeviceIndex device = 0;
      C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
      malloc(&r, device, nbytes, cuda::getCurrentCUDAStream(device));
    }
    return r;
  }

  void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) override {
    if (nbytes == 0) {
      return nullptr;
    }
    void* r = nullptr;
    if (forceUncachedAllocator() || !isEnabled()) {
      r = uncached_allocate(nbytes);
    } else {
      c10::DeviceIndex device = 0;
      C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
      malloc(&r, device, nbytes, stream);
    }
    return r;
  }

  void enablePeerAccess(c10::DeviceIndex dev, c10::DeviceIndex dev_to_access)
      override {
    c10::cuda::CUDAGuard device_guard(dev);
    cudaError_t err = cudaDeviceEnablePeerAccess(dev_to_access, 0);
    if (err == cudaErrorPeerAccessAlreadyEnabled) {
      // ignore and clear the error if access was already enabled
      (void)cudaGetLastError();
    } else {
      C10_CUDA_CHECK(err);
    }
    device_allocator[dev_to_access]->addPeerAccess(dev);
    std::lock_guard<std::mutex> lock(IpcMutex);
    for (auto& entry : ipcMemHandle_to_devptr) {
      if (entry.second.device_ == dev_to_access &&
          entry.second.expandable_segment_) {
        entry.second.expandable_segment_->addPeer(dev);
      }
    }
  }

  cudaError_t memcpyAsync(
      void* dst,
      int dstDevice,
      const void* src,
      int srcDevice,
      size_t count,
      cudaStream_t stream,
      bool p2p_enabled) override {
    if (p2p_enabled || // memcpy ok because memory is mapped in both devices
        srcDevice == dstDevice || // memcpy ok on a single device
        // memcpy ok because both dst and src must have come from cudaMalloc
        (!device_allocator[dstDevice]->hasAllocatedExpandableSegments() &&
         !device_allocator[srcDevice]->hasAllocatedExpandableSegments())) {
      return cudaMemcpyAsync(dst, src, count, cudaMemcpyDeviceToDevice, stream);
    }
    // when p2p is not enabled, only cudaMemcpyPeerAsync correctly handles
    // memory not allocated via cudaMalloc
    return cudaMemcpyPeerAsync(dst, dstDevice, src, srcDevice, count, stream);
  }

  void raw_delete(void* ptr) override {
    if (forceUncachedAllocator() || !isEnabled()) {
      uncached_delete(ptr);
    } else {
      this->free(ptr);
    }
  }

  // In CUDA IPC, sender sends a tensor to receiver via shareIPCHandle,
  // getIpcDevPtr is called by the receiving process to map the CUDA memory from
  // the sending process into its own address space.

  // When allocated with cudaMalloc we use the cudaIPCMemHandle_t APIs.
  // These APIs only allow sharing a big memory block associated with a
  // cudaIpcMemHandle_t and it can be opened only **once** per context per
  // process. There can be multiple types of storage in the same IPC mem block,
  // so we must cache the device ptr to construct typed storage as it comes.

  // When using cuMemCreate, via expandable segments, we use
  // cuMemExportToShareableHandle to create a file descriptor that can be sent
  // to the other process to sort the object. Then we recreate part of the
  // exandable segment necessary to load the allocation.

  // ipcMemHandle_to_devptr caches the mapping from shareable handle to
  // this process' memory mapping information for that share to ensure we do not
  // create it twice. When the shared_ptr is no longer in use we clean up the
  // cache.

  std::mutex IpcMutex;
  struct MemHandleCacheEntry {
    MemHandleCacheEntry(
        c10::DeviceIndex device,
        std::string& handle,
        const DeviceCachingAllocator& allocator)
        : device_(device) {
      int type = SHAREABLE_CUDA_MALLOC;
      std::istringstream ss(handle);
      if (handle.size() != CUDA_IPC_HANDLE_SIZE) {
        auto version = ss.get();
        TORCH_CHECK(
            version <= SHAREABLE_HANDLE_VERSION,
            "received sharable handle from a future version of torch that this version does not know how to handle")
        type = ss.get();
      } // otherwise this is coming from an old pytorch where it has to be a raw
        // SHARABLE_CUDA_MALLOC
      if (type == SHAREABLE_CUDA_MALLOC) {
        cudaIpcMemHandle_t cuda_handle;
        ss.read((char*)&cuda_handle, CUDA_IPC_HANDLE_SIZE);
        C10_CUDA_CHECK(cudaIpcOpenMemHandle(
            &cuda_ipc_ptr_, cuda_handle, cudaIpcMemLazyEnablePeerAccess));
      } else if (type == SHAREABLE_CUDA_EXPANDABLE_SEGMENT) {
        expandable_segment_ =
            ExpandableSegment::fromShared(device, allocator.peers(), ss)
                .release();
      } else {
        TORCH_INTERNAL_ASSERT(
            false, "unexpected or illformed shareable handle type");
      }
    }
    // this struct expects that clear is explicitly called to
    // free resources, because we only want this code running when
    // the shared pointer to this entry is destructed, not during
    // deinitialization when cuda may already have been shutdown.
    // This replicates the previous behavior of this map when it
    // stored raw cuda_ipc_ptr_ handles.
    void clear() {
      if (cuda_ipc_ptr_) {
        cuda::CUDAGuard device_guard(device_);
        C10_CUDA_CHECK(cudaIpcCloseMemHandle(cuda_ipc_ptr_));
        cuda_ipc_ptr_ = nullptr;
      }
      if (expandable_segment_) {
        delete expandable_segment_;
        expandable_segment_ = nullptr;
      }
    }
    void* ptr() {
      if (cuda_ipc_ptr_) {
        return cuda_ipc_ptr_;
      } else {
        return expandable_segment_->ptr();
      }
    }
    c10::DeviceIndex device_;
    ExpandableSegment* expandable_segment_{nullptr};
    void* cuda_ipc_ptr_{nullptr}; // nullptr if expandable_segment_ is not null
    std::weak_ptr<void> wp_;
  };

  ska::flat_hash_map<std::string, MemHandleCacheEntry> ipcMemHandle_to_devptr;
  std::shared_ptr<void> getIpcDevPtr(std::string handle) override {
    std::lock_guard<std::mutex> lock(IpcMutex);

    auto iter = ipcMemHandle_to_devptr.find(handle);
    if (iter != ipcMemHandle_to_devptr.end()) {
      auto devptr = iter->second.wp_.lock();
      // the weak_ptr should always be valid because we delete the entry from
      // the cache when the shared_ptr is destructed, so we should never get
      // here.
      TORCH_INTERNAL_ASSERT(devptr, "entry in cache has missing shared_ptr");
      return devptr;
    }
    c10::DeviceIndex curr_device = 0;
    C10_CUDA_CHECK(c10::cuda::GetDevice(&curr_device));
    auto inserted = ipcMemHandle_to_devptr.insert(
        iter,
        {handle,
         MemHandleCacheEntry(
             curr_device, handle, *device_allocator[curr_device])});
    auto sp = std::shared_ptr<void>(
        inserted->second.ptr(), [handle, this](void* ptr) {
          std::lock_guard<std::mutex> deleter_lock(IpcMutex);
          auto it = ipcMemHandle_to_devptr.find(handle);
          TORCH_INTERNAL_ASSERT(it != ipcMemHandle_to_devptr.end());
          it->second.clear();
          ipcMemHandle_to_devptr.erase(it);
        });
    inserted->second.wp_ = sp;
    return sp;
  }

  std::string name() override {
    return "native";
  }
  void copy_data(void* dest, const void* src, std::size_t count) const final {
    C10_CUDA_CHECK(
        cudaMemcpy(dest, src, count, cudaMemcpyKind::cudaMemcpyDeviceToDevice));
  }
};

static NativeCachingAllocator allocator;

void local_raw_delete(void* ptr) {
  if (TORCH_SDT_IS_ENABLED(free)) {
    TORCH_SDT_WITH_SEMAPHORE(free, ptr);
  }

  allocator.free(ptr);
}

} // namespace Native

namespace CudaMallocAsync {
// If this is put in its own header file, it gets incorrectly renamed in HIPify.
CUDAAllocator* allocator();

} // namespace CudaMallocAsync

struct BackendStaticInitializer {
  // Parses env for backend at load time, duplicating some logic from
  // CUDAAllocatorConfig. CUDAAllocatorConfig double-checks it later (at
  // runtime). Defers verbose exceptions and error checks, including Cuda
  // version checks, to CUDAAllocatorConfig's runtime doublecheck. If this
  // works, maybe we should move all of CUDAAllocatorConfig here?
  CUDAAllocator* parseEnvForBackend() {
    const auto val = c10::utils::get_env("PYTORCH_CUDA_ALLOC_CONF");
    if (val.has_value()) {
      const std::string& config = val.value();

      std::regex exp("[\\s,]+");
      std::sregex_token_iterator it(config.begin(), config.end(), exp, -1);
      std::sregex_token_iterator end;
      std::vector<std::string> options(it, end);

      for (auto option : options) {
        std::regex exp2("[:]+");
        std::sregex_token_iterator it2(option.begin(), option.end(), exp2, -1);
        std::sregex_token_iterator end2;
        std::vector<std::string> kv(it2, end2);
        if (kv.size() >= 2) {
          if (kv[0] == "backend") {
            if (kv[1] == "cudaMallocAsync")
              return CudaMallocAsync::allocator();
            if (kv[1] == "native")
              return &Native::allocator;
          }
        }
      }
    }
    return &Native::allocator;
  }

  BackendStaticInitializer() {
    auto r = parseEnvForBackend();
    allocator.store(r);
  }
};

std::atomic<CUDAAllocator*> allocator;
static BackendStaticInitializer backend_static_initializer;
} // namespace cuda::CUDACachingAllocator
} // namespace c10

namespace c10::cuda {

// uid_ is incremented when a user creates a MemPool,
// for example: using graph_pool_handle() or c10::cuda::MemPool().
//
// uuid_ is incremented when CUDAGraph creates a MemPool
// as a result of a user not providing a pool.
//
// MempoolId_t of {0, 0} is used to denote when no MemPool has been
// passed to a function, either by user or CUDAGraphs. For example,
// default value of MempoolId_t for capture_begin function is {0, 0}.
// That's why uid_ and uuid_ start at 1.
std::atomic<CaptureId_t> MemPool::uid_{1};
std::atomic<CaptureId_t> MemPool::uuid_{1};

MemPool::MemPool(
    CUDACachingAllocator::CUDAAllocator* allocator,
    bool is_user_created)
    : allocator_(allocator), is_user_created_(is_user_created) {
  if (is_user_created_) {
    id_ = {0, uid_++};
  } else {
    id_ = {uuid_++, 0};
  }
  device_ = c10::cuda::current_device();
  CUDACachingAllocator::ensureExistsAndIncrefPool(device_, id_);
}

MemPool::~MemPool() {
  TORCH_INTERNAL_ASSERT(use_count() == 1);
  CUDACachingAllocator::releasePool(device_, id_);
  auto ctx = MemPoolContext(this);
  c10::cuda::CUDACachingAllocator::emptyCache();
}

MempoolId_t MemPool::id() {
  return id_;
}

CUDACachingAllocator::CUDAAllocator* MemPool::allocator() {
  return allocator_;
}

int MemPool::use_count() {
  return CUDACachingAllocator::getPoolUseCount(device_, id_);
}

c10::DeviceIndex MemPool::device() {
  return device_;
}

MempoolId_t MemPool::graph_pool_handle(bool is_user_created) {
  if (is_user_created) {
    return {0, uid_++};
  }
  return {uuid_++, 0};
}

// Note that active_mempool_ is a global variable here
// and not inside MemPoolContext class, because in windows we
// can't use __declspec(dllexport) and __declspec(thread)
// together: https://stackoverflow.com/a/50967977
static thread_local MemPool* active_mempool_ = nullptr;

MemPoolContext::MemPoolContext(MemPool* mempool)
    : prev_mempool_(active_mempool_) {
  active_mempool_ = mempool;
}

MemPoolContext::~MemPoolContext() {
  active_mempool_ = prev_mempool_;
}

MemPool* MemPoolContext::getActiveMemPool() {
  return active_mempool_;
}

} // namespace c10::cuda