1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
|
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/UniqueVoidPtr.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <unordered_set>
#include <vector>
namespace c10::cuda::CUDACachingAllocator::CudaMallocAsync {
using namespace c10::CachingDeviceAllocator;
#if CUDA_VERSION >= 11040
// CUDA device allocator that uses cudaMallocAsync to implement
// the same interface as CUDACachingAllocator.cpp.
// Designed to be safe for CUDA graph capture.
// Interactions with CUDA graph capture are mediated by
// notifyCaptureBegin
// notifyCaptureAboutToEnd
// notifyCaptureEnded
// notifyCaptureDestroy
// Implementation details, not declared in CUDACachingAllocator.h
namespace {
// General helpers
struct UsageStream {
cudaStream_t stream;
c10::DeviceIndex device;
UsageStream() = default;
UsageStream(cudaStream_t s, c10::DeviceIndex d) : stream(s), device(d) {}
UsageStream(const UsageStream& us) = default;
UsageStream(UsageStream&& us) noexcept = default;
UsageStream& operator=(const UsageStream& other) = default;
UsageStream& operator=(UsageStream&& other) noexcept = default;
~UsageStream() = default;
};
bool operator==(const UsageStream& lhs, const UsageStream& rhs) {
return (lhs.stream == rhs.stream) && (lhs.device == rhs.device);
}
struct UsageStreamHash {
size_t operator()(const UsageStream& us) const noexcept {
return std::hash<void*>{}(us.stream) + size_t(us.device);
}
};
struct PtrUsage {
// recorded_streams holds side usage streams added by record_stream calls.
// In other words, it does NOT include the original creation stream.
ska::flat_hash_set<UsageStream, UsageStreamHash> recorded_streams;
UsageStream creation_stream{};
uint64_t size;
bool captured;
PtrUsage(uint64_t s, bool c) : size(s), captured(c) {}
};
int device_count = 0;
// these don't need to be c10::once_flags as in CUDAGeneratorImpl.cpp
// because they'll only be flipped by functions that have locked the mutex.
std::vector<bool> devs_initialized_flags;
std::vector<UsageStream> dummy_unifying_free_streams;
// Possible micro-optimization:
// Some accesses to ptr_info are read-only.
// We could let those be concurrent with a shared_mutex and
// have concurrent calls take a shared_lock.
// Keeping it simple with an ordinary mutex for now.
std::mutex general_mutex;
/**
* Note [Avoid freeing uncaptured ptrs during CUDA graph capture]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* During CUDA graph capture, it's illegal to call cudaFreeAsync
* on a pointer that came from a non-captured cudaMallocAsync.
* Unfortunately, Python being what it is, it's impossible to be
* sure no uncaptured tensor will ever have its destructor called
* in a capturing region.
* We avoid errors by
* 1. remembering if allocated pointers were captured or uncaptured
* 2. during capture, if we detect an attempt to free an uncaptured
* allocation on a capturing stream, don't free it immediately,
* just remember it and defer its cudaFreeAsync call to after
* the end of capture (specifically, to notifyCaptureEnded).
*/
using PtrInfo = ska::flat_hash_map<void*, PtrUsage>;
PtrInfo ptr_info;
std::vector<void*> ungraphed_ptrs_defer_free_until_no_capture;
// These two help setMemoryFraction limit the amount of memory
// used by PyTorch in particular (as opposed to other libraries
// in the same process that might be sharing the same cudaMemPool_t).
std::vector<size_t> pytorch_used_bytes;
std::vector<size_t> pytorch_memory_limits;
// Graph-specific helpers
/**
* Note [Avoid dangling free streams during CUDA graph capture]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* During capture, all stream dependencies must branch out from
* the stream on which capture began and rejoin this initial stream
* before capture ends.
* The user rigs desired forking and joining with event waits.
* But it's hard to be sure when tensor destructors get called relative
* to the final joins.
* For example, suppose a user
* forks work stream B from initial capture stream A
* creates a tensor T in B
* joins by syncing A with B
* ends capture.
* All well and good, right? Maybe not: maybe T went out of scope
* and its destructor got called AFTER the rejoin, leaving the graph with
* "unjoined work": a dangling cudaFreeAsync node in stream B.
* Ensuring that all tensor destructors for all side stream tensors
* are called before side streams rejoin the main stream is
* difficult. The user might have to add a bunch of explicit
* "del"s at the right spots in code that was fine for ordinary
* eager execution.
* Fortunately, we can spare the user this burden:
* during capture, we remember _all_ free streams,
* and manually rejoin them with the capture stream during
* notifyCaptureAboutToEnd.
* This approach is heavy-handed, but hopefully capture only needs to
* happen once, so we don't mind being heavy-handed.
*
* TODO: If, someday, we augment the graph bindings to support recapture
* https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#whole-graph-update
* (eg, as a way to accommodate dynamic params) we should think more
* carefully about the CPU overhead of remembering and rejoining
* all free streams during capture. Maybe it's not a big deal.
*/
std::unordered_set<UsageStream, UsageStreamHash> capture_free_streams;
bool capture_underway = false;
// Implementation functions
// Assumes the caller holds general_mutex
inline void lazy_init_device(c10::DeviceIndex device) {
if (!devs_initialized_flags[device]) {
CUDAGuard g(device);
// See "Retaining memory in the pool" here:
// https://developer.nvidia.com/blog/using-cuda-stream-ordered-memory-allocator-part-1/
cudaMemPool_t mempool = nullptr;
C10_CUDA_CHECK(cudaDeviceGetDefaultMemPool(&mempool, device));
uint64_t threshold = UINT64_MAX;
C10_CUDA_CHECK(cudaMemPoolSetAttribute(
mempool, cudaMemPoolAttrReleaseThreshold, &threshold));
// I think all these are on by default, but I want to enable them
// explicitly to ensure awareness.
int enable = 1;
C10_CUDA_CHECK(cudaMemPoolSetAttribute(
mempool, cudaMemPoolReuseFollowEventDependencies, &enable));
C10_CUDA_CHECK(cudaMemPoolSetAttribute(
mempool, cudaMemPoolReuseAllowOpportunistic, &enable));
C10_CUDA_CHECK(cudaMemPoolSetAttribute(
mempool, cudaMemPoolReuseAllowInternalDependencies, &enable));
// Grabs a stream from the current device to use as the "unifier" free
// stream for allocations that end up used on multiple streams.
const auto dufs = getStreamFromPool();
dummy_unifying_free_streams[device] =
UsageStream(dufs.stream(), dufs.device_index());
pytorch_used_bytes[device] = 0;
pytorch_memory_limits[device] = UINT64_MAX;
devs_initialized_flags[device] = true;
}
}
inline void sync_raw(cudaStream_t dependency, cudaStream_t dependent) {
// CUDACachingAllocator.cpp uses raw cuda events, as do we.
cudaEvent_t event = nullptr;
C10_CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
C10_CUDA_CHECK(cudaEventRecord(event, dependency));
C10_CUDA_CHECK(cudaStreamWaitEvent(dependent, event));
C10_CUDA_CHECK(cudaEventDestroy(event));
}
// Assumes the caller holds general_mutex
inline void free_impl(PtrInfo::iterator& it) {
// Possible micro-optimization: If we did a value-copy here, we could move
// ptr_info.erase(it) up here and drop the lock immediately.
const auto& recorded_streams = it->second.recorded_streams;
const auto& creation_stream = it->second.creation_stream;
// If the usage stream is a null (default) stream,
// cudaFreeAsync infers the device from the ambient context,
// so we need to set the right ambient context.
CUDAGuard g(creation_stream.device);
if (recorded_streams.empty()) {
// ptr was only used on one stream, which must have been
// the original allocation stream.
// Frees ptr in the original allocation stream.
C10_CUDA_CHECK(cudaFreeAsync(it->first, creation_stream.stream));
if (C10_UNLIKELY(capture_underway)) {
// See Note [Avoid dangling free streams during CUDA graph capture]
capture_free_streams.insert(creation_stream);
}
} else {
// ptr was used on many streams. We don't know which was the most recent.
// There could even have been multiple most recent usage streams acting
// on different regions of the memory.
// But cudaFreeAsync only accepts a single most recent usage stream.
// We can still safely free ptr with a trick:
// Use a dummy "unifying stream", sync the unifying stream with all of
// ptr's usage streams, and pass the dummy stream to cudaFreeAsync.
// Retrieves the dummy "unifier" stream from the device
// on which the pointer was originally allocated.
auto dummy_unifying_free_stream =
dummy_unifying_free_streams[creation_stream.device];
TORCH_INTERNAL_ASSERT(
dummy_unifying_free_stream.device == creation_stream.device);
// we're already on creation_stream.device, no need to re-guard
sync_raw(creation_stream.stream, dummy_unifying_free_stream.stream);
// The number of usage streams is typically small (low single digits)
for (const auto& recorded_stream : recorded_streams) {
// Logic here accommodates the chance some of the usage streams were on
// other devices, which is possible if some usage kernels accessed the
// memory via p2p.
// cudaEventRecord requires that the input event and stream are on the
// same device.
CUDAGuard g_usage(recorded_stream.device);
sync_raw(recorded_stream.stream, dummy_unifying_free_stream.stream);
}
// Frees ptr in the dummy "unifier" stream.
C10_CUDA_CHECK(cudaFreeAsync(it->first, dummy_unifying_free_stream.stream));
// At this point, unless dummy_unifying_free_stream happens to alias some
// future user stream, the allocation is only available for "opportunistic"
// reuse, ie, if the CPU sees dummy_unifying_free_stream has reached the
// point that all events recorded on all usage streams have resolved from
// the CPU's perspective. In theory, we could remove the need for the driver
// to do this tracking by e.g. replacing
// cudaStreamWaitEvent(dummy_unifying_free_stream.stream, event);
// with
// cudaStreamWaitEvent(creation_stream.stream, event);
// then cudaFreeAsyncing straight back into creation_stream.stream,
// but this forces a potentially false dependency of creation_stream.stream
// on all the recorded_streams.
if (C10_UNLIKELY(capture_underway)) {
// See Note [Avoid dangling free streams during CUDA graph capture]
capture_free_streams.emplace(
dummy_unifying_free_stream.stream, dummy_unifying_free_stream.device);
}
}
pytorch_used_bytes[creation_stream.device] -= it->second.size;
ptr_info.erase(it);
}
void freeAsync(void* ptr) {
std::lock_guard<std::mutex> lk(general_mutex);
auto err = cudaGetLastError();
C10_CUDA_CHECK(err);
auto it = ptr_info.find(ptr);
TORCH_INTERNAL_ASSERT(it != ptr_info.end(), "ptr not found in ptr_info");
if (C10_UNLIKELY(capture_underway)) {
if (!it->second.captured) {
TORCH_WARN_ONCE(
"freeAsync() was called on an uncaptured allocation during graph capture "
"(address = ",
ptr,
"). This may be benign, for example, a Python tensor in the capture "
"might happen to shadow (use the same name as) an unrelated temporary "
"tensor from somewhere before capture, pushing the earlier tensor "
"out of scope. "
"However, if the tensor we're freeing here IS used by the capture, "
"freeing it is an error, and may cause illegal memory accesses or "
"memory corruption during graph replay.");
// See Note [Avoid freeing uncaptured ptrs during CUDA graph capture]
// Remembers the raw pointer, not the iterator.
// This forces notifyCaptureEnded to do another lookup,
// but avoids the risk the iterator might be invalidated
// between now and then.
ungraphed_ptrs_defer_free_until_no_capture.push_back(ptr);
return;
}
} else if (C10_UNLIKELY(it->second.captured)) {
TORCH_WARN(
"Attempting uncaptured free of a captured allocation with address ",
ptr,
"\nThis is technically allowed, but may indicate you are losing "
"the last user-visible tensor through which the allocation can "
"be accessed, so you'll have no way to view the data after "
"future replays of the owning graph.");
}
free_impl(it);
}
// Symmetric with NativeCachingAllocator::malloc for now,
// although I don't think we absolutely need the symmetry.
void mallocAsync(
void** devPtr,
c10::DeviceIndex device,
size_t size,
cudaStream_t stream) {
TORCH_INTERNAL_ASSERT(
0 <= device && device < device_count,
"Invalid device index ",
device,
": did you call init?");
// If stream is a null (default) stream,
// cudaMallocAsync infers the device from the ambient context,
// so we need to set the right ambient context.
CUDAGuard g(device);
std::lock_guard<std::mutex> lk(general_mutex);
if (!capture_underway &&
!ungraphed_ptrs_defer_free_until_no_capture.empty()) {
// See Note [Avoid freeing uncaptured ptrs during CUDA graph capture]
for (const auto ptr : ungraphed_ptrs_defer_free_until_no_capture) {
auto it = ptr_info.find(ptr);
TORCH_INTERNAL_ASSERT(it != ptr_info.end(), "ptr not found in ptr_info");
free_impl(it);
}
ungraphed_ptrs_defer_free_until_no_capture.clear();
}
lazy_init_device(device);
// Defensively checks for preexisting CUDA error state.
auto err = cudaGetLastError();
C10_CUDA_CHECK(err);
// TODO: Could we avoid calling cudaMallocAsync while holding general_mutex,
// perhaps by letting lazy_init_device use separate once_flags or an internal
// static initializer?
if (pytorch_used_bytes[device] + size > pytorch_memory_limits[device]) {
err = cudaErrorMemoryAllocation;
} else {
err = cudaMallocAsync(devPtr, size, stream);
}
if (err == cudaErrorMemoryAllocation) {
// Clears CUDA's internal error state so the user, if desired, can catch the
// OOM exception, free some stuff on the script side, and retry the
// allocation. This aligns with the behavior of alloc_block in
// CUDACachingAllocator.cpp.
(void)cudaGetLastError(); // clear CUDA error
size_t device_free = 0;
size_t device_total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
TORCH_CHECK_WITH(
OutOfMemoryError,
false,
"Allocation on device ",
device,
" would exceed allowed memory. (out of memory)",
"\nCurrently allocated : ",
format_size(pytorch_used_bytes[device]),
"\nRequested : ",
format_size(size),
"\nDevice limit : ",
format_size(device_total),
"\nFree (according to CUDA): ",
format_size(device_free),
"\nPyTorch limit (set by user-supplied memory fraction)"
"\n : ",
format_size(pytorch_memory_limits[device]));
} else {
C10_CUDA_CHECK(err);
}
auto inserted = ptr_info.emplace(*devPtr, PtrUsage(size, capture_underway));
TORCH_INTERNAL_ASSERT(
inserted.second,
"address returned by cudaMallocAsync already exists "
"in ptr_info");
inserted.first->second.creation_stream = {stream, device};
pytorch_used_bytes[device] += size;
}
} // anonymous namespace
static void local_raw_delete(void* ptr);
// Same pattern as CUDACachingAllocator.cpp.
struct CudaMallocAsyncAllocator : public CUDAAllocator {
DataPtr allocate(size_t size) override {
constexpr size_t one_exa_bytes = 1152921504606846976ULL;
TORCH_CHECK_WITH(
OutOfMemoryError,
size < one_exa_bytes,
"CUDA out of memory. Tried to allocate more than 1EB memory.");
c10::DeviceIndex device = 0;
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
void* r = nullptr;
if (size != 0) {
mallocAsync(&r, device, size, cuda::getCurrentCUDAStream(device));
}
return {r, r, &local_raw_delete, Device(DeviceType::CUDA, device)};
}
DeleterFnPtr raw_deleter() const override {
return &local_raw_delete;
}
// This function should not issue any context-creating calls,
// just set up for later calls to init per-device pools based
// on the current device each later call sees.
void init(int dev_count) override {
static bool called = [](int dev_count) {
;
// Are there external guarantees init will be called before
// any of the allocator's other functions?
// std::lock_guard<std::mutex> lk(general_mutex);
device_count = dev_count;
devs_initialized_flags.resize(dev_count, false);
dummy_unifying_free_streams.resize(dev_count);
pytorch_used_bytes.resize(dev_count);
pytorch_memory_limits.resize(dev_count);
return true;
}(dev_count);
(void)called;
}
bool initialized() override {
return !devs_initialized_flags.empty();
}
static inline void assertValidDevice(c10::DeviceIndex device) {
TORCH_CHECK(
0 <= device && device < device_count, "Invalid device argument.");
}
double getMemoryFraction(c10::DeviceIndex device) override {
std::lock_guard<std::mutex> lk(general_mutex);
assertValidDevice(device);
CUDAGuard g(device);
lazy_init_device(device);
size_t device_free = 0;
size_t device_total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
return static_cast<double>(pytorch_memory_limits[device]) /
static_cast<double>(device_total);
}
void setMemoryFraction(double fraction, c10::DeviceIndex device) override {
TORCH_INTERNAL_ASSERT(
0 <= fraction && fraction <= 1,
"invalid fraction:",
fraction,
". Please set within (0, 1).");
std::lock_guard<std::mutex> lk(general_mutex);
assertValidDevice(device);
CUDAGuard g(device);
// Should setMemoryFraction be allowed to trigger a full device context and
// pool-creating lazy_init_device, or should we simply assert this device is
// already initialized, ie
// TORCH_CHECK(devs_initialized_flags[device], ...)?
lazy_init_device(device);
size_t device_free = 0;
size_t device_total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
pytorch_memory_limits[device] =
static_cast<uint64_t>(fraction * static_cast<double>(device_total));
// Alternative: Instead of a manual hard limit, we could use
// cudaMemPoolSetAttribute(mempool, cudaMemPoolAttrReleaseThreshold,
// &threshold); This is a soft hint: The driver allows the pool's reserved
// memory to spike above threshold in regions of high cudaMallocAsync
// demand, but opportunistically trims reserved memory back to threshold
// when the memory in use is < threshold. I don't like this because it
// introduces performance nondeterminism.
}
void emptyCache() override {
std::lock_guard<std::mutex> lk(general_mutex);
for (int dev = 0; dev < device_count; dev++) {
if (devs_initialized_flags[dev]) {
CUDAGuard g(static_cast<c10::DeviceIndex>(dev));
cudaMemPool_t mempool = nullptr;
cudaDeviceGetDefaultMemPool(&mempool, dev);
cudaDeviceSynchronize();
cudaMemPoolTrimTo(mempool, 0);
}
}
}
void enable(bool) override {
// cannot disable
}
bool isEnabled() const override {
return true;
}
void cacheInfo(c10::DeviceIndex device, size_t* maxWorkspaceGuess) override {
// The only consumer of cacheInfo is getMaxWorkspaceSize in Conv_v7.cpp.
// Afaict, the role of cacheInfo is to give getMaxWorkspaceSize a reasonable
// maximum workspace size to use for an upcoming cudnnFind call.
//
// The native allocator's cacheInfo chooses to return the size of its
// largest unused block (which is the largest allocation the native
// allocator can service immediately and asynchronously without a
// cudaMalloc.
//
// Here, we use a different heuristic: figure out the max usable workspace
// size with a bit of educated trial and error. It's ok to be
// perf-inefficient because cacheInfo is a prelude to cudnnFind.
//
// The algo cache then stores the best-performing algo with workspace <=
// maxWorkspaceGuess. Later calls with the same param set hit in cache and
// try to allocate the same workspace. If, in one of those future calls,
// workspace allocation fails (ie because less ambient memory is available),
// the bindings rerun cudnnFind, including calling cacheInfo again
// beforehand to estimate a new (smaller) largest-available workspace. Over
// a few such calls, the cache should settle to the algo with a workspace
// size that's small enough to succeed every time (for that param set).
//
// So the strategy here is to return a rough, largeish guess and let the
// bindings retry to trim as needed over time.
//
// The only caveat is, even if a workspace is allocated without OOM errors
// now and in future calls, it's hard to be sure those later error-free
// cudaMallocAsyncs are fast and come straight from the pool (ie,
// cudaMallocAsync didn't need to reserve more memory from the system).
// Hopefully, after repeated workspace requests, the pool's reserved memory
// also stabilizes to a point where they all come straight from the pool.
std::lock_guard<std::mutex> lk(general_mutex);
assertValidDevice(device);
CUDAGuard g(device);
lazy_init_device(device);
size_t free_upper_bound = 0;
size_t device_total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&free_upper_bound, &device_total));
TORCH_INTERNAL_ASSERT(
free_upper_bound + pytorch_used_bytes[device] <= device_total);
size_t guess = std::min(
free_upper_bound,
pytorch_memory_limits[device] - pytorch_used_bytes[device]);
auto stream = c10::cuda::getCurrentCUDAStream();
void* dummy = nullptr;
// Defensively checks for preexisting CUDA error state.
auto err = cudaGetLastError();
C10_CUDA_CHECK(err);
while (true) {
// Duplicates some logic from mallocAsync to work with the error state
// directly instead of repeatedly catching an exception thrown by
// mallocAsync.
if (pytorch_used_bytes[device] + guess > pytorch_memory_limits[device]) {
err = cudaErrorMemoryAllocation;
} else {
err = cudaMallocAsync(&dummy, guess, stream);
}
if (err == cudaSuccess) {
cudaFreeAsync(dummy, stream);
*maxWorkspaceGuess = guess;
return;
} else if (err == cudaErrorMemoryAllocation) {
(void)cudaGetLastError(); // clear CUDA error
guess >>= 1; // quick and dirty: try half the size next iteration
} else {
C10_CUDA_CHECK(err);
}
}
}
void* getBaseAllocation(void* ptr, size_t* size) override {
std::lock_guard<std::mutex> lk(general_mutex);
auto it = ptr_info.find(ptr);
TORCH_INTERNAL_ASSERT(it != ptr_info.end(), "ptr not found in ptr_info");
if (size) {
*size = it->second.size;
}
return ptr;
}
void recordStream(const DataPtr& ptr, cuda::CUDAStream stream) override {
std::lock_guard<std::mutex> lk(general_mutex);
auto ptr_val = ptr.get();
// Empty tensor's storage().data() might be a null ptr. As there is no
// blocks associated with those tensors, it is fine to do nothing here.
if (!ptr_val) {
return;
}
// The pointer should exist in the map already.
auto it = ptr_info.find(ptr_val);
TORCH_INTERNAL_ASSERT(it != ptr_info.end(), "ptr not found in ptr_info");
UsageStream to_record{stream.stream(), stream.device_index()};
if (to_record == it->second.creation_stream) {
TORCH_WARN_ONCE(
"Called record_stream on tensor whose original creation stream "
"matches the recorded stream. This is unnecessary and has no effect.");
} else {
it->second.recorded_streams.insert(to_record);
}
}
ShareableHandle shareIpcHandle(void* handle) override {
TORCH_CHECK(
false,
"cudaMallocAsync does not yet support shareIpcHandle. "
"If you need it, please file an issue describing your use case.");
}
std::shared_ptr<void> getIpcDevPtr(std::string handle) override {
TORCH_CHECK(
false,
"cudaMallocAsync does not yet support getIpcDevPtr. "
"If you need it, please file an issue describing your use case.");
}
void recordHistory(
bool enabled,
CreateContextFn context_recorder,
size_t alloc_trace_max_entries,
RecordContext when) override {
TORCH_CHECK(
false,
"cudaMallocAsync does not yet support recordHistory. "
"If you need it, please file an issue describing your use case.");
}
void attachOutOfMemoryObserver(OutOfMemoryObserver observer) override {
TORCH_CHECK(
false,
"cudaMallocAsync does not yet support attachOutOfMemoryObserver. "
"If you need it, please file an issue describing your use case.");
}
void attachAllocatorTraceTracker(AllocatorTraceTracker tracker) override {
TORCH_CHECK(
false,
"cudaMallocAsync does not yet support attachAllocatorTraceTracker. "
"If you need it, please file an issue describing your use case.");
}
std::shared_ptr<AllocatorState> getCheckpointState(
c10::DeviceIndex device,
MempoolId_t id) override {
TORCH_CHECK(
false,
"cudaMallocAsync does not yet support getCheckpointState. "
"If you need it, please file an issue describing your use case.");
}
CheckpointDelta setCheckpointPoolState(
c10::DeviceIndex device,
std::shared_ptr<AllocatorState> pps) override {
TORCH_CHECK(
false,
"cudaMallocAsync does not yet support setCheckpointPoolState. "
"If you need it, please file an issue describing your use case.");
}
// Collects stats for device.
// If device hasn't been used yet, returns 0s without creating a context.
DeviceStats getDeviceStats(c10::DeviceIndex device) override {
assertValidDevice(device);
// Memory currently reserved by the mempool
uint64_t reserved_mem_current = 0;
// High-water mark of memory reserved by the mempool since last reset
uint64_t reserved_mem_peak = 0;
// Memory currently in use by the mempool
uint64_t used_mem_current = 0;
// High-water mark of memory
uint64_t used_mem_peak = 0;
std::lock_guard<std::mutex> lk(general_mutex);
if (devs_initialized_flags[device]) {
CUDAGuard g(device);
cudaMemPool_t mempool = nullptr;
C10_CUDA_CHECK(cudaDeviceGetDefaultMemPool(&mempool, device));
C10_CUDA_CHECK(cudaMemPoolGetAttribute(
mempool, cudaMemPoolAttrReservedMemCurrent, &reserved_mem_current));
C10_CUDA_CHECK(cudaMemPoolGetAttribute(
mempool, cudaMemPoolAttrReservedMemHigh, &reserved_mem_peak));
C10_CUDA_CHECK(cudaMemPoolGetAttribute(
mempool, cudaMemPoolAttrUsedMemCurrent, &used_mem_current));
C10_CUDA_CHECK(cudaMemPoolGetAttribute(
mempool, cudaMemPoolAttrUsedMemHigh, &used_mem_peak));
}
// Many stat types are specific to the native allocator. We leave these
// untouched. Their "struct Stat"s will contain zeroed values.
DeviceStats stats;
// In the native allocator:
// allocated_bytes is the total bytes of blocks that have been malloc()ed
// and not yet free()d.
// active_bytes is the total bytes of blocks that have been malloc()ed but
// not yet released back into a free pool. In other words, it includes all
// allocated_bytes, as well as the bytes of "limbo state" blocks had have
// already been free()ed but not yet free_block()ed back into a pool due to
// outstanding stream_uses.
//
// Here, in the cudaMallocAsync allocator:
// We simply ask the driver's opinion about active memory.
// We don't bother distinguishing between allocated_bytes and active_bytes.
stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].current =
static_cast<int64_t>(used_mem_current);
stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].peak =
static_cast<int64_t>(used_mem_peak);
stats.active_bytes[static_cast<size_t>(StatType::AGGREGATE)].current =
static_cast<int64_t>(used_mem_current);
stats.active_bytes[static_cast<size_t>(StatType::AGGREGATE)].peak =
static_cast<int64_t>(used_mem_peak);
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].current =
static_cast<int64_t>(reserved_mem_current);
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].peak =
static_cast<int64_t>(reserved_mem_peak);
return stats;
}
void resetAccumulatedStats(c10::DeviceIndex device) override {
assertValidDevice(device);
TORCH_WARN_ONCE(
"For backend:cudaMallocAsync, resetAccumulatedStats has no effect.");
}
void resetPeakStats(c10::DeviceIndex device) override {
assertValidDevice(device);
CUDAGuard g(device);
cudaMemPool_t mempool = nullptr;
C10_CUDA_CHECK(cudaDeviceGetDefaultMemPool(&mempool, device));
// Using zero as the reset value is the method recommended by Cuda driver
// team. Vivek Kini says:
// "Resetting to zero (which is the only valid value when setting
// ReservedMemHigh) resets it to ReservedMemCurrent inside the driver
// (same goes for UsedMemHigh/UsedMemCurrent)"
uint64_t zero = 0;
C10_CUDA_CHECK(cudaMemPoolSetAttribute(
mempool, cudaMemPoolAttrReservedMemHigh, &zero));
C10_CUDA_CHECK(
cudaMemPoolSetAttribute(mempool, cudaMemPoolAttrUsedMemHigh, &zero));
}
SnapshotInfo snapshot() override {
TORCH_CHECK(
false,
"Calling snapshot with backend:cudaMallocAsync is not meaningful. "
"(For backend:native, snapshot returns a detailed summary of all "
"blocks tracked by the allocator, but the cudaMallocAsync backend "
"does not track individual blocks.)");
// Alternative: TORCH_WARN
return {};
}
// CUDAGraph interactions
void beginAllocateToPool(
c10::DeviceIndex device,
MempoolId_t mempool_id,
std::function<bool(cudaStream_t)>) override {
std::lock_guard<std::mutex> lk(general_mutex);
TORCH_INTERNAL_ASSERT(capture_free_streams.empty());
TORCH_CHECK(
!capture_underway,
"Only one capture at a time is allowed in a process.")
capture_underway = true;
}
void endAllocateToPool(c10::DeviceIndex device, MempoolId_t mempool_id)
override {
assertValidDevice(device);
std::lock_guard<std::mutex> lk(general_mutex);
TORCH_CHECK(
capture_underway,
"CudaMallocAsync::notifyCaptureAboutToEnd called, "
"but CudaMallocAsync::capture_underway is false.");
auto capture_stream = cuda::getCurrentCUDAStream(device);
// See Note [Avoid dangling free streams during CUDA graph capture]
for (const auto& free_stream : capture_free_streams) {
// cudaEventRecord requires that the input event and stream are on the
// same device.
CUDAGuard g(free_stream.device);
// CUDACachingAllocator.cpp uses raw cuda events, as do we.
cudaEvent_t event = nullptr;
C10_CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
C10_CUDA_CHECK(cudaEventRecord(event, free_stream.stream));
C10_CUDA_CHECK(cudaStreamWaitEvent(capture_stream.stream(), event));
C10_CUDA_CHECK(cudaEventDestroy(event));
}
capture_free_streams.clear();
TORCH_CHECK(
capture_underway,
"CudaMallocAsync::notifyCaptureEnded called, "
"but CudaMallocAsync::capture_underway is false.");
capture_underway = false;
}
void releasePool(c10::DeviceIndex device, MempoolId_t mempool_id) override {
// Q: Do we need to do anything special here, like clear long-lived
// pointers created during the original capture (for example,
// tensors intended as the graph's I/O surface) that might still
// be resident in ptr_info?
// A: I don't think so.
// Those allocations survived capture because the user held
// explicit tensor references to them,
// Those tensors' destructors will call freeAsync() on each pointer
// when the user is done with them.
// The freeAsync()s will probably incur
// TORCH_WARN("Attempting uncaptured free of a captured allocation..."
// but stale ptrs will not permanently leak into ptr_info.
}
void* raw_alloc(size_t nbytes) override {
if (nbytes == 0) {
return nullptr;
}
c10::DeviceIndex device = 0;
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
void* r = nullptr;
mallocAsync(&r, device, nbytes, cuda::getCurrentCUDAStream(device));
return r;
}
void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) override {
if (nbytes == 0) {
return nullptr;
}
c10::DeviceIndex device = 0;
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
void* r = nullptr;
mallocAsync(&r, device, nbytes, stream);
return r;
}
void raw_delete(void* ptr) override {
freeAsync(ptr);
}
void enablePeerAccess(c10::DeviceIndex dev, c10::DeviceIndex dev_to_access)
override {
// Double-checks allocator backend hasn't changed, which would definitely be
// an error. cudaMallocAsync pools are unaffected by
// cudaDeviceEnablePeerAccess. We need pool-specific enablement. See
// https://developer.nvidia.com/blog/using-cuda-stream-ordered-memory-allocator-part-2/
c10::cuda::CUDAGuard device_guard(dev);
cudaMemPool_t mempool = nullptr;
C10_CUDA_CHECK(cudaDeviceGetDefaultMemPool(&mempool, dev_to_access));
cudaMemAccessDesc desc = {};
desc.location.type = cudaMemLocationTypeDevice;
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
desc.location.id = dev;
desc.flags = cudaMemAccessFlagsProtReadWrite;
C10_CUDA_CHECK(cudaMemPoolSetAccess(mempool, &desc, 1 /* numDescs */));
}
cudaError_t memcpyAsync(
void* dst,
int dstDevice,
const void* src,
int srcDevice,
size_t count,
cudaStream_t stream,
bool p2p_enabled) override {
if (p2p_enabled || dstDevice == srcDevice) {
return cudaMemcpyAsync(dst, src, count, cudaMemcpyDeviceToDevice, stream);
} else {
return cudaMemcpyPeerAsync(dst, dstDevice, src, srcDevice, count, stream);
}
}
std::string name() override {
return "cudaMallocAsync";
}
void copy_data(void* dest, const void* src, std::size_t count) const final {
C10_CUDA_CHECK(
cudaMemcpy(dest, src, count, cudaMemcpyKind::cudaMemcpyDeviceToDevice));
}
};
static CudaMallocAsyncAllocator device_allocator;
void local_raw_delete(void* ptr) {
freeAsync(ptr);
}
CUDAAllocator* allocator() {
return &device_allocator;
}
#else
CUDAAllocator* allocator() {
TORCH_CHECK(false, "Cannot use CudaMallocAsyncAllocator with cuda < 11.4.");
return nullptr;
}
#endif
} // namespace c10::cuda::CUDACachingAllocator::CudaMallocAsync
|