1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
#include <c10/test/util/Macros.h>
#include <c10/util/NetworkFlow.h>
#include <gtest/gtest.h>
#include <cstdlib>
namespace {
template <typename T>
bool vector_contains(const std::vector<T>& vec, const T& element) {
for (const auto& e : vec) {
if (e == element) {
return true;
}
}
return false;
}
template <typename T>
void expect_vector_contains_subset(
const std::vector<T>& vec,
const std::vector<T>& subset) {
for (auto& element : subset) {
if (!vector_contains(vec, element)) {
std::stringstream ss;
ss << "Failed: checking whether {";
for (auto& e : subset) {
ss << e << ", ";
}
ss << "} is a subset of {";
for (auto& e : vec) {
ss << e << ", ";
}
ss << "}, but couldn't find " << element;
FAIL() << ss.str();
}
}
}
namespace test_network_flow {
TEST(NetworkFlowTest, basic) {
/*
* 3 1 2
* -->b-- ->e--
* / 1| \/ \
* / 2 v 2/\ 2 \
* a---->c-/ ->f---->h
* \ 2\/ /
* \3 1/\ 2/
* -->d-- ->g--
*
* Consider these augmenting paths that constitute a blocking flow:
* a -> d -> f -> h (capacity 1), saturates d->f
* a -> c -> g -> h (capacity 2), saturates a->c, c->g, g->h
* a -> b -> c -> e -> h (capacity 1), saturates b->c
* a -> b -> f -> h (capacity 1), saturates b->f, f->h
*/
c10::NetworkFlowGraph g;
g.add_edge("a", "b", 3); // flow: 2
g.add_edge("a", "c", 2); // flow: 2
g.add_edge("a", "d", 3); // flow: 1
g.add_edge("b", "f", 1); // flow: 1
g.add_edge("c", "e", 2); // flow: 1
g.add_edge("c", "g", 2); // flow: 2
g.add_edge("d", "f", 1); // flow: 1
g.add_edge("b", "c", 1); // flow: 1
g.add_edge("e", "h", 2); // flow: 1
g.add_edge("f", "h", 2); // flow: 2
g.add_edge("g", "h", 2); // flow: 2
auto res = g.minimum_cut("a", "h");
EXPECT_EQ(res.status, c10::MinCutStatus::SUCCESS);
EXPECT_EQ(res.max_flow, 5);
// how we "reach" these vertices from "h":
// h -> e: we see the e->h edge has residual capacity
// e -> c: we see the c->e edge has residual capacity
// c -> g: the c->g edge has flow, therefore the g->c edge has residual
// capacity
expect_vector_contains_subset(res.unreachable, {"h", "e", "c", "g"});
expect_vector_contains_subset(res.reachable, {"a", "b", "d", "f"});
}
TEST(NetworkFlowTest, loop) {
/* 1
* -------------------
* / \
* 1 / 1 1 \ 1
* a --------> b --------> c -------> d --------> e
*/
c10::NetworkFlowGraph g;
g.add_edge("a", "b", 1); // flow: 1
g.add_edge("b", "c", 1); // flow: 1
g.add_edge("c", "d", 1); // flow: 1
g.add_edge("d", "e", 1); // flow: 1
g.add_edge("d", "b", 1); // flow: 0
auto res = g.minimum_cut("a", "e");
EXPECT_EQ(res.status, c10::MinCutStatus::SUCCESS);
EXPECT_EQ(res.max_flow, 1);
expect_vector_contains_subset(res.unreachable, {"e"});
expect_vector_contains_subset(res.reachable, {"a", "b", "c", "d"});
}
TEST(NetworkFlowTest, disconnected_vertices) {
/*
* 1
* c --------> d
*
* 1
* a --------> b
*/
c10::NetworkFlowGraph g;
g.add_edge("a", "b", 1); // flow: 1
g.add_edge("c", "d", 1); // flow: 0
auto res = g.minimum_cut("a", "b");
EXPECT_EQ(res.status, c10::MinCutStatus::SUCCESS);
EXPECT_EQ(res.max_flow, 1);
expect_vector_contains_subset(res.unreachable, {"b"});
// unintuitively, "c" and "d" get marked as reachable; this mirrors networkx
// behavior.
expect_vector_contains_subset(res.reachable, {"a", "c", "d"});
}
TEST(NetworkFlowTest, invalid_endpoints) {
c10::NetworkFlowGraph g;
g.add_edge("a", "b", 1);
auto res = g.minimum_cut("a", "c");
EXPECT_EQ(res.status, c10::MinCutStatus::INVALID);
res = g.minimum_cut("c", "b");
EXPECT_EQ(res.status, c10::MinCutStatus::INVALID);
}
TEST(NetworkFlowTest, unbounded) {
c10::NetworkFlowGraph g;
g.add_edge("a", "b", c10::NetworkFlowGraph::INF);
auto res = g.minimum_cut("a", "b");
EXPECT_EQ(res.status, c10::MinCutStatus::UNBOUNDED);
}
TEST(NetworkFlowTest, overflow) {
c10::NetworkFlowGraph g;
auto flow1 = c10::NetworkFlowGraph::INF / 2;
auto flow2 = c10::NetworkFlowGraph::INF - flow1;
g.add_edge("a", "b", flow1);
g.add_edge("a", "b", flow2);
auto res = g.minimum_cut("a", "b");
EXPECT_EQ(res.status, c10::MinCutStatus::OVERFLOW_INF);
}
TEST(NetworkFlowTest, reverse_edge) {
/*
* 100
* --------
* / \
* 1 < 1 \
* a ---------> b ---------> c
*
*/
c10::NetworkFlowGraph g;
g.add_edge("a", "b", 1);
g.add_edge("b", "c", 1);
g.add_edge("c", "a", 100);
auto res = g.minimum_cut("a", "c");
EXPECT_EQ(res.status, c10::MinCutStatus::SUCCESS);
EXPECT_EQ(res.max_flow, 1);
expect_vector_contains_subset(res.unreachable, {"c"});
expect_vector_contains_subset(res.reachable, {"a", "b"});
}
} // namespace test_network_flow
} // namespace
|