1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
#include <c10/util/ApproximateClock.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/irange.h>
#include <fmt/format.h>
namespace c10 {
ApproximateClockToUnixTimeConverter::ApproximateClockToUnixTimeConverter()
: start_times_(measurePairs()) {}
ApproximateClockToUnixTimeConverter::UnixAndApproximateTimePair
ApproximateClockToUnixTimeConverter::measurePair() {
// Take a measurement on either side to avoid an ordering bias.
auto fast_0 = getApproximateTime();
auto wall = std::chrono::system_clock::now();
auto fast_1 = getApproximateTime();
TORCH_INTERNAL_ASSERT(fast_1 >= fast_0, "getCount is non-monotonic.");
auto t = std::chrono::duration_cast<std::chrono::nanoseconds>(
wall.time_since_epoch());
// `x + (y - x) / 2` is a more numerically stable average than `(x + y) / 2`.
return {t.count(), fast_0 + (fast_1 - fast_0) / 2};
}
ApproximateClockToUnixTimeConverter::time_pairs
ApproximateClockToUnixTimeConverter::measurePairs() {
static constexpr auto n_warmup = 5;
for ([[maybe_unused]] const auto _ : c10::irange(n_warmup)) {
getApproximateTime();
static_cast<void>(steady_clock_t::now());
}
time_pairs out;
for (const auto i : c10::irange(out.size())) {
out[i] = measurePair();
}
return out;
}
std::function<time_t(approx_time_t)> ApproximateClockToUnixTimeConverter::
makeConverter() {
auto end_times = measurePairs();
// Compute the real time that passes for each tick of the approximate clock.
std::array<long double, replicates> scale_factors{};
for (const auto i : c10::irange(replicates)) {
auto delta_ns = end_times[i].t_ - start_times_[i].t_;
auto delta_approx = end_times[i].approx_t_ - start_times_[i].approx_t_;
scale_factors[i] = (double)delta_ns / (double)delta_approx;
}
std::sort(scale_factors.begin(), scale_factors.end());
long double scale_factor = scale_factors[replicates / 2 + 1];
// We shift all times by `t0` for better numerics. Double precision only has
// 16 decimal digits of accuracy, so if we blindly multiply times by
// `scale_factor` we may suffer from precision loss. The choice of `t0` is
// mostly arbitrary; we just need a factor that is the correct order of
// magnitude to bring the intermediate values closer to zero. We are not,
// however, guaranteed that `t0_approx` is *exactly* the getApproximateTime
// equivalent of `t0`; it is only an estimate that we have to fine tune.
auto t0 = start_times_[0].t_;
auto t0_approx = start_times_[0].approx_t_;
std::array<double, replicates> t0_correction{};
for (const auto i : c10::irange(replicates)) {
auto dt = start_times_[i].t_ - t0;
auto dt_approx =
(double)(start_times_[i].approx_t_ - t0_approx) * scale_factor;
t0_correction[i] = dt - (time_t)dt_approx; // NOLINT
}
t0 += t0_correction[t0_correction.size() / 2 + 1]; // NOLINT
return [=](approx_time_t t_approx) {
// See above for why this is more stable than `A * t_approx + B`.
return t_approx > t0_approx
? (time_t)((double)(t_approx - t0_approx) * scale_factor) + t0
: 0;
};
}
} // namespace c10
|