1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
#include <c10/util/CallOnce.h>
#include <c10/util/irange.h>
#include <c10/xpu/XPUException.h>
#include <c10/xpu/XPUStream.h>
#include <atomic>
#include <deque>
#include <mutex>
#include <vector>
namespace c10::xpu {
namespace {
// Global stream state and constants
c10::once_flag init_flag;
DeviceIndex num_gpus = -1;
constexpr int kStreamsPerPoolBits = 5;
constexpr int kStreamsPerPool = 1 << kStreamsPerPoolBits;
constexpr int kStreamTypeBits = 3;
// The SYCL queue pools are lazily initialized when the first queue is requested
// for a device. The device flags track the initialization of each device. When
// a queue is requested, the next queue in the pool to be returned in a
// round-robin fashion, see Note [Stream Management].
std::deque<c10::once_flag> device_flags;
std::vector<std::array<
std::array<std::unique_ptr<sycl::queue>, kStreamsPerPool>,
max_compile_time_stream_priorities>>
streams;
std::deque<
std::array<std::atomic<uint32_t>, max_compile_time_stream_priorities>>
priority_counters;
thread_local std::unique_ptr<StreamId[]> current_streams = nullptr;
// Note [StreamId assignment]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// How do we assign stream IDs?
//
// -- 56 bits -- -- 5 bits ----- -- 3 bits -- -- 1 bits --
// zeros StreamIdIndex StreamIdType Ext/native stream
//
// Where StreamIdType:
// 000 = normal priority queue
// 001 = high priority queue
//
// for external stream, StreamID is a sycl::queue* pointer
// this means that last bit will always be 0
// so when constructing StreamId for a native stream we set last bit to 1
// to distinguish between native and external streams
//
// StreamId is 64-bit, so we can just rely on regular promotion rules.
// We rely on StreamIdIndex and StreamIdType being non-negative;
using StreamIdIndex = uint8_t;
enum class StreamIdType : uint8_t {
// The higher the type number, the higher the priority.
// EXT is used for external streams, which we don't know the priority of.
NORMAL = 0x0,
HIGH = 0X1,
EXT = 0x7,
};
inline std::ostream& operator<<(std::ostream& stream, StreamIdType q) {
switch (q) {
case StreamIdType::NORMAL:
return stream << "NORMAL";
case StreamIdType::HIGH:
return stream << "HIGH";
case StreamIdType::EXT:
return stream << "EXT";
default:
break;
}
return stream << static_cast<int16_t>(q);
}
inline StreamIdType streamIdType(StreamId s) {
// Externally allocated streams have their id being the sycl:queue* pointer
// so the last bit will be 0
if ((!(s & 1) && s)) {
return StreamIdType(StreamIdType::EXT);
}
int mask_for_type = (1 << kStreamTypeBits) - 1;
auto st = static_cast<StreamIdType>((s >> 1) & mask_for_type);
TORCH_CHECK(
st == StreamIdType::NORMAL || st == StreamIdType::HIGH,
"invalid StreamId: ",
s);
return st;
}
inline StreamIdIndex streamIdIndex(StreamId s) {
return static_cast<StreamIdIndex>(
(s >> (kStreamTypeBits + 1)) & ((1 << kStreamsPerPoolBits) - 1));
}
inline StreamId makeStreamId(StreamIdType st, StreamIdIndex si) {
return (static_cast<StreamId>(si) << (kStreamTypeBits + 1)) |
(static_cast<StreamId>(st) << 1) | 1;
}
void initGlobalStreamState() {
num_gpus = c10::xpu::device_count();
device_flags.resize(num_gpus);
streams.resize(num_gpus);
priority_counters.resize(num_gpus);
}
// Creates the reserved SYCL queue pools for the specified device. It should be
// call only once.
void initDeviceStreamState(DeviceIndex device) {
using namespace sycl::ext::oneapi::property;
// Need to align with StreamIdType.
const std::vector<sycl::property_list> properties = {
{sycl::property::queue::in_order(), queue::priority_normal()},
{sycl::property::queue::in_order(), queue::priority_high()}};
for (const auto p : c10::irange(max_compile_time_stream_priorities)) {
for (const auto i : c10::irange(kStreamsPerPool)) {
auto& stream = streams[device][p][i];
stream = std::make_unique<sycl::queue>(sycl::queue(
c10::xpu::get_device_context(),
c10::xpu::get_raw_device(device),
c10::xpu::asyncHandler,
properties[p]));
const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
if (C10_UNLIKELY(interp)) {
(*interp)->trace_gpu_stream_creation(
c10::kXPU, reinterpret_cast<uintptr_t>(stream.get()));
}
}
priority_counters[device][p] = 0;
}
}
void initXPUStreamsOnce() {
c10::call_once(init_flag, initGlobalStreamState);
if (current_streams) {
return;
}
// Inits current streams (thread local) to the last queue in the "normal
// priority" queue pool. Note: the queue pool have not been initialized yet.
// It will be initialized in initDeviceStreamState for the specified device.
current_streams = std::make_unique<StreamId[]>(num_gpus);
for (const auto i : c10::irange(num_gpus)) {
// Assigning the current stream to the last one in the pool can be
// beneficial in certain scenarios, particularly when users initialize their
// workload to perform computations with the current stream (the last one)
// and utilize stream (the first one) from the pool for communication, it
// allows for different streams to overlap in computation and communication.
current_streams[i] =
makeStreamId(StreamIdType::NORMAL, kStreamsPerPool - 1);
}
}
// Creates the reserved sycl queue pools for the specified device to ensure
// initialization only occurs once.
inline void initDeviceStreamOnce(DeviceIndex device) {
c10::call_once(device_flags[device], initDeviceStreamState, device);
}
uint32_t get_idx(std::atomic<uint32_t>& counter) {
auto raw_idx = counter++;
return raw_idx % kStreamsPerPool;
}
XPUStream XPUStreamForId(DeviceIndex device_index, StreamId stream_id) {
return XPUStream(
XPUStream::UNCHECKED,
Stream(
Stream::UNSAFE,
c10::Device(DeviceType::XPU, device_index),
stream_id));
}
} // anonymous namespace
int XPUStream::priority() const {
StreamId stream_id = stream_.id();
StreamIdType st = streamIdType(stream_id);
// For an external queue which is not created in XPUStream, we can not trace
// the priority. Workaround here since sycl doesn't support get priority from
// a sycl::queue, like cudaStreamGetPriority .
// TODO: remove this workaround when sycl supports get priority from a
// sycl::queue.
if (st == StreamIdType::EXT) {
st = StreamIdType::NORMAL;
}
// StreamIdType and priority number are inversely related.
return -static_cast<int>(st);
}
// See Note [StreamId assignment]
sycl::queue& XPUStream::queue() const {
DeviceIndex device_index = stream_.device_index();
StreamId stream_id = stream_.id();
StreamIdType st = streamIdType(stream_id);
StreamIdIndex si = streamIdIndex(stream_id);
switch (st) {
case StreamIdType::EXT:
return *(reinterpret_cast<sycl::queue*>(stream_id));
case StreamIdType::NORMAL:
case StreamIdType::HIGH:
return *streams[device_index][static_cast<uint8_t>(st)][si];
default:
TORCH_CHECK(
false,
"Unrecognized stream ",
stream_,
" (I didn't recognize the stream type, ",
st,
").",
" Did you manufacture the StreamId yourself? Don't do that;");
}
}
// Returns a stream from the requested pool
// Note: The stream pools will be initialized if needed, at the first invocation
// to this function.
XPUStream getStreamFromPool(const int priority, DeviceIndex device) {
initXPUStreamsOnce();
if (device == -1) {
device = c10::xpu::current_device();
}
check_device_index(device);
TORCH_CHECK(
priority <= 0,
"Expected XPU stream priority to be less than or equal to 0, got ",
priority);
// Initializes the stream pools (once)
initDeviceStreamOnce(device);
auto priority_idx =
std::min(-priority, max_compile_time_stream_priorities - 1);
const auto idx = get_idx(priority_counters[device][priority_idx]);
auto id_type = static_cast<StreamIdType>(priority_idx);
return XPUStreamForId(device, makeStreamId(id_type, idx));
}
XPUStream getStreamFromPool(const bool isHighPriority, DeviceIndex device) {
initXPUStreamsOnce();
// If isHighPriority is true, return the stream with the highest priority.
int priority = isHighPriority ? -max_compile_time_stream_priorities + 1 : 0;
return getStreamFromPool(priority, device);
}
XPUStream getStreamFromExternal(
sycl::queue* ext_stream,
DeviceIndex device_index) {
// The sycl::queue* will be the actual id
TORCH_CHECK(ext_stream, "External stream must not be a nullptr.");
return XPUStreamForId(device_index, reinterpret_cast<int64_t>(ext_stream));
}
// Note: The stream pools will be initialized if needed, at the first invocation
// to this function.
XPUStream getCurrentXPUStream(DeviceIndex device) {
initXPUStreamsOnce();
if (device == -1) {
device = c10::xpu::current_device();
}
check_device_index(device);
// Initializes the stream pool (once)
initDeviceStreamOnce(device);
return XPUStreamForId(device, current_streams[device]);
}
// Note: The stream pools will be initialized if needed, at the first invocation
// to this function.
void setCurrentXPUStream(XPUStream stream) {
initXPUStreamsOnce();
current_streams[stream.device_index()] = stream.id();
}
std::ostream& operator<<(std::ostream& stream, const XPUStream& s) {
return stream << s.unwrap();
}
/*
* Note [Synchronize Streams on Device]
*
* There are two stream pools per device to manage our reserved SYCL queues.
* When syncStreamsOnDevice is called, all reserved SYCL queues in the pools of
* the specified device will be blocked, and wait for their synchronizations. We
* realize the semantics via a loop through the stream pools of the specified
* device and make each command queue synchronization sequentially.
*
* There is a semantic gap with device synchronization because only the SYCL
* queues we have reserved (in our pools) will be synchronized, rather than
* synchronizing all SYCL queues on the specified device.
*/
// Note: The stream pools will be initialized if needed, at the first invocation
// to this function.
void syncStreamsOnDevice(DeviceIndex device) {
initXPUStreamsOnce();
if (device == -1) {
device = c10::xpu::current_device();
}
check_device_index(device);
// Initializes the stream pools (once)
initDeviceStreamOnce(device);
// For each device, we have kStreamsPerPool (32) reserved queues per priority.
for (const auto p : c10::irange(max_compile_time_stream_priorities)) {
for (const auto i : c10::irange(kStreamsPerPool)) {
streams[device][p][i]->wait();
}
}
const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
if (C10_UNLIKELY(interp)) {
(*interp)->trace_gpu_device_synchronization(c10::kXPU);
}
}
} // namespace c10::xpu
|