1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
#include <gtest/gtest.h>
#include <c10/core/DeviceGuard.h>
#include <c10/util/irange.h>
#include <c10/xpu/XPUException.h>
#include <c10/xpu/XPUStream.h>
#include <c10/xpu/test/impl/XPUTest.h>
#include <optional>
#include <thread>
#include <unordered_set>
bool has_xpu() {
return c10::xpu::device_count() > 0;
}
TEST(XPUStreamTest, CopyAndMoveTest) {
if (!has_xpu()) {
return;
}
int32_t device = -1;
sycl::queue queue;
c10::xpu::XPUStream copyStream = c10::xpu::getStreamFromPool();
{
auto s = c10::xpu::getStreamFromPool();
device = s.device_index();
queue = s.queue();
copyStream = s;
EXPECT_EQ(copyStream.device_index(), device);
EXPECT_EQ(copyStream.queue(), queue);
}
EXPECT_EQ(copyStream.device_index(), device);
EXPECT_EQ(copyStream.queue(), queue);
// Tests that moving works as expected and preserves the stream
c10::xpu::XPUStream moveStream = c10::xpu::getStreamFromPool();
{
auto s = c10::xpu::getStreamFromPool();
device = s.device_index();
queue = s.queue();
moveStream = std::move(s);
EXPECT_EQ(moveStream.device_index(), device);
EXPECT_EQ(moveStream.queue(), queue);
}
EXPECT_EQ(moveStream.device_index(), device);
EXPECT_EQ(moveStream.queue(), queue);
}
TEST(XPUStreamTest, StreamBehavior) {
if (!has_xpu()) {
return;
}
c10::xpu::XPUStream stream = c10::xpu::getStreamFromPool();
EXPECT_EQ(stream.device_type(), c10::kXPU);
c10::xpu::setCurrentXPUStream(stream);
c10::xpu::XPUStream cur_stream = c10::xpu::getCurrentXPUStream();
EXPECT_EQ(cur_stream, stream);
EXPECT_EQ(stream.priority(), 0);
auto [least_priority, greatest_priority] =
c10::xpu::XPUStream::priority_range();
EXPECT_EQ(least_priority, 0);
EXPECT_TRUE(greatest_priority < 0);
stream = c10::xpu::getStreamFromPool(/* isHighPriority */ true);
EXPECT_TRUE(stream.priority() < 0);
if (c10::xpu::device_count() <= 1) {
return;
}
c10::xpu::set_device(0);
stream = c10::xpu::getStreamFromPool(false, 1);
EXPECT_EQ(stream.device_index(), 1);
EXPECT_NE(stream.device_index(), c10::xpu::current_device());
}
void thread_fun(std::optional<c10::xpu::XPUStream>& cur_thread_stream) {
auto new_stream = c10::xpu::getStreamFromPool();
c10::xpu::setCurrentXPUStream(new_stream);
cur_thread_stream = {c10::xpu::getCurrentXPUStream()};
EXPECT_EQ(*cur_thread_stream, new_stream);
}
// Ensures streams are thread local
TEST(XPUStreamTest, MultithreadStreamBehavior) {
if (!has_xpu()) {
return;
}
std::optional<c10::xpu::XPUStream> s0, s1;
std::thread t0{thread_fun, std::ref(s0)};
std::thread t1{thread_fun, std::ref(s1)};
t0.join();
t1.join();
c10::xpu::XPUStream cur_stream = c10::xpu::getCurrentXPUStream();
EXPECT_NE(cur_stream, *s0);
EXPECT_NE(cur_stream, *s1);
EXPECT_NE(s0, s1);
}
// Ensure queue pool round-robin fashion
TEST(XPUStreamTest, StreamPoolRoundRobinTest) {
if (!has_xpu()) {
return;
}
std::vector<c10::xpu::XPUStream> streams{};
for ([[maybe_unused]] const auto _ : c10::irange(200)) {
streams.emplace_back(c10::xpu::getStreamFromPool());
}
std::unordered_set<sycl::queue> queue_set{};
bool hasDuplicates = false;
for (const auto i : c10::irange(streams.size())) {
auto& queue = streams[i].queue();
auto result_pair = queue_set.insert(queue);
if (!result_pair.second) { // already existed
hasDuplicates = true;
} else { // newly inserted
EXPECT_TRUE(!hasDuplicates);
}
}
EXPECT_TRUE(hasDuplicates);
auto stream = c10::xpu::getStreamFromPool(/* isHighPriority */ true);
auto result_pair = queue_set.insert(stream.queue());
EXPECT_TRUE(result_pair.second);
}
void asyncMemCopy(sycl::queue& queue, int* dst, int* src, size_t numBytes) {
queue.memcpy(dst, src, numBytes);
}
TEST(XPUStreamTest, StreamFunction) {
if (!has_xpu()) {
return;
}
constexpr int numel = 1024;
int hostData[numel];
initHostData(hostData, numel);
auto stream = c10::xpu::getStreamFromPool();
EXPECT_TRUE(stream.query());
int* deviceData = sycl::malloc_device<int>(numel, stream);
// H2D
asyncMemCopy(stream, deviceData, hostData, sizeof(int) * numel);
c10::xpu::syncStreamsOnDevice();
EXPECT_TRUE(stream.query());
clearHostData(hostData, numel);
// D2H
asyncMemCopy(stream, hostData, deviceData, sizeof(int) * numel);
c10::xpu::syncStreamsOnDevice();
validateHostData(hostData, numel);
stream = c10::xpu::getStreamFromPool(-1);
clearHostData(hostData, numel);
// D2H
asyncMemCopy(stream, hostData, deviceData, sizeof(int) * numel);
c10::xpu::syncStreamsOnDevice();
validateHostData(hostData, numel);
sycl::free(deviceData, c10::xpu::get_device_context());
}
// Verifies external streams can be created and used
TEST(XPUStreamTest, ExternalTest) {
if (!has_xpu()) {
return;
}
c10::DeviceGuard device_guard(c10::Device(c10::DeviceType::XPU, 0));
using namespace sycl::ext::oneapi::property;
sycl::queue* stream = new sycl::queue(
c10::xpu::get_device_context(),
c10::xpu::get_raw_device(0),
c10::xpu::asyncHandler,
{sycl::property::queue::in_order(), queue::priority_normal()});
at::xpu::XPUStream myStream = at::xpu::getStreamFromExternal(stream, 0);
at::xpu::setCurrentXPUStream(myStream);
at::xpu::XPUStream curStream = at::xpu::getCurrentXPUStream();
ASSERT_TRUE(curStream == myStream);
ASSERT_TRUE(&(curStream.queue()) == stream);
delete stream;
}
// Verifies different external streams can be used for different devices at the
// same time
TEST(XPUStreamTest, ExternalMultiDeviceTest) {
if (!has_xpu()) {
return;
}
if (c10::xpu::device_count() < 2)
return;
sycl::queue* stream_0 = nullptr;
sycl::queue* stream_1 = nullptr;
using namespace sycl::ext::oneapi::property;
{
c10::DeviceGuard device_guard(c10::Device(c10::DeviceType::XPU, 0));
stream_0 = new sycl::queue(
c10::xpu::get_device_context(),
c10::xpu::get_raw_device(0),
c10::xpu::asyncHandler,
{sycl::property::queue::in_order(), queue::priority_normal()});
}
{
c10::DeviceGuard device_guard(c10::Device(c10::DeviceType::XPU, 1));
stream_0 = new sycl::queue(
c10::xpu::get_device_context(),
c10::xpu::get_raw_device(1),
c10::xpu::asyncHandler,
{sycl::property::queue::in_order(), queue::priority_normal()});
}
at::xpu::XPUStream myStream0 = at::xpu::getStreamFromExternal(stream_0, 0);
at::xpu::XPUStream myStream1 = at::xpu::getStreamFromExternal(stream_1, 1);
at::xpu::setCurrentXPUStream(myStream0);
ASSERT_TRUE(at::xpu::getCurrentXPUStream(0) == myStream0);
at::xpu::setCurrentXPUStream(myStream1);
ASSERT_TRUE(at::xpu::getCurrentXPUStream(0) == myStream0);
ASSERT_TRUE(at::xpu::getCurrentXPUStream(1) == myStream1);
delete stream_0;
delete stream_1;
}
|