1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
Source: pytorch-cuda
Section: contrib/science
Homepage: https://pytorch.org/
Priority: optional
Standards-Version: 4.7.0
Vcs-Git: https://salsa.debian.org/deeplearning-team/pytorch.git
Vcs-Browser: https://salsa.debian.org/deeplearning-team/pytorch
Maintainer: Debian Deep Learning Team <debian-ai@lists.debian.org>
Uploaders: Mo Zhou <lumin@debian.org>
Rules-Requires-Root: no
Build-Depends: cmake,
debhelper-compat (= 13),
dh-exec,
dh-python,
googletest,
glslc,
libblas-dev,
libbenchmark-dev,
libcpuinfo-dev (>= 0.0~git20230113.6481e8b~),
libcpp-httplib-dev,
libdnnl-dev (>= 3.6.0~) [amd64 arm64 ppc64el],
libeigen3-dev,
libfmt-dev,
libfp16-dev (>= 0.0~git20200514.4dfe081~),
libflatbuffers-dev,
flatbuffers-compiler-dev,
libfxdiv-dev (>= 0.0~git20200417.b408327~),
libgloo-cuda-dev (>= 0.0~git20230519.597accf~) [amd64 arm64 ppc64el],
libideep-dev (>= 0.0~git20230825.6f4d653~) [amd64 arm64 ppc64el],
liblapack-dev,
llvm-19,
llvm-19-dev,
libnuma-dev,
libonnx-dev (>= 1.14.1~),
libprotobuf-dev,
libprotoc-dev,
libpsimd-dev (>= 0.0~git20200517.072586a~),
libpthreadpool-dev (>= 0.0~git20210507.1787867~),
libsleef-dev (>= 3.6.1-1~),
libsnappy-dev,
libtensorpipe-cuda-dev (>= 0.0~git20220513.bb1473a~),
libzstd-dev,
libvulkan-dev,
libvulkan-memory-allocator-dev,
libxnnpack-dev (>= 0.0~git20241108.4ea82e5~) [amd64 arm64],
nlohmann-json3-dev,
ninja-build,
protobuf-compiler,
pybind11-dev,
python3,
python3-dev,
python3-cffi,
python3-expecttest,
python3-numpy,
python3-onnx,
python3-pybind11,
python3-setuptools,
python3-yaml,
patchelf,
nvidia-cuda-toolkit,
nvidia-cuda-toolkit-gcc,
nvidia-cudnn (>= 8.7.0.84~cuda11.8),
libcudnn-frontend-dev (>= 0.9.2~),
libcutlass-dev (>= 3.4.1+ds-2),
libcub-dev,
libnccl-dev,
libcupti-dev,
lld,
Package: python3-torch-cuda
Section: contrib/python
Architecture: amd64 arm64 ppc64el
Depends: libtorch-cuda-2.6 (= ${binary:Version}),
${misc:Depends},
${python3:Depends},
${shlibs:Depends},
libtorch-cuda-test (= ${binary:Version}),
# PyTorch's JIT (C++ Extension) functionality needs development files/tools.
Recommends: libtorch-cuda-dev (= ${binary:Version}),
build-essential,
ninja-build,
pybind11-dev,
Suggests: python3-hypothesis, python3-pytest
Provides: ${python3:Provides}, python3-torch-api-2.6
Conflicts: python3-torch
Replaces: python3-torch
Description: Tensors and Dynamic neural networks in Python (Python Interface)
PyTorch is a Python package that provides two high-level features:
.
(1) Tensor computation (like NumPy) with strong GPU acceleration
(2) Deep neural networks built on a tape-based autograd system
.
You can reuse your favorite Python packages such as NumPy, SciPy and Cython
to extend PyTorch when needed.
.
This is the CUDA version of PyTorch (Python interface).
Package: libtorch-cuda-dev
Section: contrib/libdevel
Architecture: amd64 arm64 ppc64el
Depends: libtorch-cuda-2.6 (= ${binary:Version}),
python3-dev,
libprotobuf-dev,
${misc:Depends}
Conflicts: libtorch-dev
Replaces: libtorch-dev
Description: Tensors and Dynamic neural networks in Python (Development Files)
PyTorch is a Python package that provides two high-level features:
.
(1) Tensor computation (like NumPy) with strong GPU acceleration
(2) Deep neural networks built on a tape-based autograd system
.
You can reuse your favorite Python packages such as NumPy, SciPy and Cython
to extend PyTorch when needed.
.
This is the CUDA version of PyTorch (Development files).
Package: libtorch-cuda-2.6
Section: contrib/libs
Architecture: amd64 arm64 ppc64el
Multi-Arch: same
Depends: ${misc:Depends}, ${shlibs:Depends},
Recommends: libopenblas0 | libblis3 | libatlas3-base | libmkl-rt | libblas3,
Conflicts: libtorch1.13, libtorch-cuda-1.13,
libtorch2.0, libtorch-cuda-2.0,
libtorch2.1, libtorch-cuda-2.1,
libtorch2.4, libtorch-cuda-2.4,
libtorch2.5, libtorch-cuda-2.5,
libtorch2.6
Replaces: libtorch1.13, libtorch-cuda-1.13,
libtorch2.0, libtorch-cuda-2.0,
libtorch2.1, libtorch-cuda-2.1,
libtorch2.4, libtorch-cuda-2.4,
libtorch2.5, libtorch-cuda-2.5,
libtorch2.6
Description: Tensors and Dynamic neural networks in Python (Shared Objects)
PyTorch is a Python package that provides two high-level features:
.
(1) Tensor computation (like NumPy) with strong GPU acceleration
(2) Deep neural networks built on a tape-based autograd system
.
You can reuse your favorite Python packages such as NumPy, SciPy and Cython
to extend PyTorch when needed.
.
This is the CUDA version of PyTorch (Shared Objects).
Package: libtorch-cuda-test
Section: contrib/libs
Architecture: amd64 arm64 ppc64el
Depends: libtorch-cuda-2.6 (= ${binary:Version}), ${misc:Depends}, ${shlibs:Depends},
Conflicts: libtorch-test
Replaces: libtorch-test
Description: Tensors and Dynamic neural networks in Python (Test Binaries)
PyTorch is a Python package that provides two high-level features:
.
(1) Tensor computation (like NumPy) with strong GPU acceleration
(2) Deep neural networks built on a tape-based autograd system
.
You can reuse your favorite Python packages such as NumPy, SciPy and Cython
to extend PyTorch when needed.
.
This is the CUDA version of PyTorch (Test Binaries).
|