File: control.cuda

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (162 lines) | stat: -rw-r--r-- 6,184 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
Source: pytorch-cuda
Section: contrib/science
Homepage: https://pytorch.org/
Priority: optional
Standards-Version: 4.7.0
Vcs-Git: https://salsa.debian.org/deeplearning-team/pytorch.git
Vcs-Browser: https://salsa.debian.org/deeplearning-team/pytorch
Maintainer: Debian Deep Learning Team <debian-ai@lists.debian.org>
Uploaders: Mo Zhou <lumin@debian.org>
Rules-Requires-Root: no
Build-Depends: cmake,
               debhelper-compat (= 13),
               dh-exec,
               dh-python,
               googletest,
               glslc,
               libblas-dev,
               libbenchmark-dev,
               libcpuinfo-dev (>= 0.0~git20230113.6481e8b~),
               libcpp-httplib-dev,
               libdnnl-dev (>= 3.6.0~) [amd64 arm64 ppc64el],
               libeigen3-dev,
               libfmt-dev,
               libfp16-dev (>= 0.0~git20200514.4dfe081~),
               libflatbuffers-dev,
               flatbuffers-compiler-dev,
               libfxdiv-dev (>= 0.0~git20200417.b408327~),
               libgloo-cuda-dev (>= 0.0~git20230519.597accf~) [amd64 arm64 ppc64el],
               libideep-dev (>= 0.0~git20230825.6f4d653~) [amd64 arm64 ppc64el],
               liblapack-dev,
               llvm-19,
               llvm-19-dev,
               libnuma-dev,
               libonnx-dev (>= 1.14.1~),
               libprotobuf-dev,
               libprotoc-dev,
               libpsimd-dev (>= 0.0~git20200517.072586a~),
               libpthreadpool-dev (>= 0.0~git20210507.1787867~),
               libsleef-dev (>= 3.6.1-1~),
               libsnappy-dev,
               libtensorpipe-cuda-dev (>= 0.0~git20220513.bb1473a~),
               libzstd-dev,
               libvulkan-dev,
               libvulkan-memory-allocator-dev,
               libxnnpack-dev (>= 0.0~git20241108.4ea82e5~) [amd64 arm64],
               nlohmann-json3-dev,
               ninja-build,
               protobuf-compiler,
               pybind11-dev,
               python3,
               python3-dev,
               python3-cffi,
               python3-expecttest,
               python3-numpy,
               python3-onnx,
               python3-pybind11,
               python3-setuptools,
               python3-yaml,
               patchelf,
               nvidia-cuda-toolkit,
               nvidia-cuda-toolkit-gcc,
               nvidia-cudnn (>= 8.7.0.84~cuda11.8),
               libcudnn-frontend-dev (>= 0.9.2~),
               libcutlass-dev (>= 3.4.1+ds-2),
               libcub-dev,
               libnccl-dev,
               libcupti-dev,
               lld,

Package: python3-torch-cuda
Section: contrib/python
Architecture: amd64 arm64 ppc64el
Depends: libtorch-cuda-2.6 (= ${binary:Version}),
         ${misc:Depends},
         ${python3:Depends},
         ${shlibs:Depends},
         libtorch-cuda-test (= ${binary:Version}),
# PyTorch's JIT (C++ Extension) functionality needs development files/tools.
Recommends: libtorch-cuda-dev (= ${binary:Version}),
            build-essential,
            ninja-build,
            pybind11-dev,
Suggests: python3-hypothesis, python3-pytest
Provides: ${python3:Provides}, python3-torch-api-2.6
Conflicts: python3-torch
Replaces: python3-torch
Description: Tensors and Dynamic neural networks in Python (Python Interface)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CUDA version of PyTorch (Python interface).

Package: libtorch-cuda-dev
Section: contrib/libdevel
Architecture: amd64 arm64 ppc64el
Depends: libtorch-cuda-2.6 (= ${binary:Version}),
         python3-dev,
         libprotobuf-dev,
         ${misc:Depends}
Conflicts: libtorch-dev
Replaces: libtorch-dev
Description: Tensors and Dynamic neural networks in Python (Development Files)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CUDA version of PyTorch (Development files).

Package: libtorch-cuda-2.6
Section: contrib/libs
Architecture: amd64 arm64 ppc64el
Multi-Arch: same
Depends: ${misc:Depends}, ${shlibs:Depends},
Recommends: libopenblas0 | libblis3 | libatlas3-base | libmkl-rt | libblas3,
Conflicts: libtorch1.13, libtorch-cuda-1.13,
           libtorch2.0, libtorch-cuda-2.0,
           libtorch2.1, libtorch-cuda-2.1,
           libtorch2.4, libtorch-cuda-2.4,
           libtorch2.5, libtorch-cuda-2.5,
           libtorch2.6
Replaces: libtorch1.13, libtorch-cuda-1.13,
          libtorch2.0, libtorch-cuda-2.0,
          libtorch2.1, libtorch-cuda-2.1,
          libtorch2.4, libtorch-cuda-2.4,
          libtorch2.5, libtorch-cuda-2.5,
          libtorch2.6
Description: Tensors and Dynamic neural networks in Python (Shared Objects)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CUDA version of PyTorch (Shared Objects).

Package: libtorch-cuda-test
Section: contrib/libs
Architecture: amd64 arm64 ppc64el
Depends: libtorch-cuda-2.6 (= ${binary:Version}), ${misc:Depends}, ${shlibs:Depends},
Conflicts: libtorch-test
Replaces: libtorch-test
Description: Tensors and Dynamic neural networks in Python (Test Binaries)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CUDA version of PyTorch (Test Binaries).