File: cond.rst

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (176 lines) | stat: -rw-r--r-- 6,418 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
.. _cond:

Control Flow - Cond
====================

`torch.cond` is a structured control flow operator. It can be used to specify if-else like control flow
and can logically be seen as implemented as follows.

.. code-block:: python

    def cond(
        pred: Union[bool, torch.Tensor],
        true_fn: Callable,
        false_fn: Callable,
        operands: Tuple[torch.Tensor]
    ):
        if pred:
            return true_fn(*operands)
        else:
            return false_fn(*operands)

Its unique power lies in its ability of expressing **data-dependent control flow**: it lowers to a conditional
operator (`torch.ops.higher_order.cond`), which preserves predicate, true function and false functions.
This unlocks great flexibility in writing and deploying models that change model architecture based on
the **value** or **shape** of inputs or intermediate outputs of tensor operations.

.. warning::
    `torch.cond` is a prototype feature in PyTorch. It has limited support for input and output types and
    doesn't support training currently. Please look forward to a more stable implementation in a future version of PyTorch.
    Read more about feature classification at: https://pytorch.org/blog/pytorch-feature-classification-changes/#prototype

Examples
~~~~~~~~

Below is an example that uses cond to branch based on input shape:

.. code-block:: python

    import torch

    def true_fn(x: torch.Tensor):
        return x.cos() + x.sin()

    def false_fn(x: torch.Tensor):
        return x.sin()

    class DynamicShapeCondPredicate(torch.nn.Module):
        """
        A basic usage of cond based on dynamic shape predicate.
        """

        def __init__(self):
            super().__init__()

        def forward(self, x: torch.Tensor) -> torch.Tensor:
            def true_fn(x: torch.Tensor):
                return x.cos()

            def false_fn(x: torch.Tensor):
                return x.sin()

            return torch.cond(x.shape[0] > 4, true_fn, false_fn, (x,))

    dyn_shape_mod = DynamicShapeCondPredicate()

We can eagerly run the model and expect the results vary based on input shape:

.. code-block:: python

    inp = torch.randn(3)
    inp2 = torch.randn(5)
    assert torch.equal(dyn_shape_mod(inp), false_fn(inp))
    assert torch.equal(dyn_shape_mod(inp2), true_fn(inp2))

We can export the model for further transformations and deployment:

.. code-block:: python

    inp = torch.randn(4, 3)
    dim_batch = torch.export.Dim("batch", min=2)
    ep = torch.export.export(DynamicShapeCondPredicate(), (inp,), {}, dynamic_shapes={"x": {0: dim_batch}})
    print(ep)

This gives us an exported program as shown below:

.. code-block::

    class GraphModule(torch.nn.Module):
        def forward(self, arg0_1: f32[s0, 3]):
            sym_size: Sym(s0) = torch.ops.aten.sym_size.int(arg0_1, 0)
            gt: Sym(s0 > 4) = sym_size > 4;  sym_size = None
            true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            conditional: f32[s0, 3] = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [arg0_1]);  gt = true_graph_0 = false_graph_0 = arg0_1 = None
            return (conditional,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: f32[s0, 3]):
                cos: f32[s0, 3] = torch.ops.aten.cos.default(arg0_1)
                sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None
                add: f32[s0, 3] = torch.ops.aten.add.Tensor(cos, sin);  cos = sin = None
                return add

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: f32[s0, 3]):
                sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None
                return sin

Notice that `torch.cond` is lowered to `torch.ops.higher_order.cond`, its predicate becomes a Symbolic expression over the shape of input,
and branch functions becomes two sub-graph attributes of the top level graph module.

Here is another example that showcases how to express a data-dependent control flow:

.. code-block:: python

    class DataDependentCondPredicate(torch.nn.Module):
        """
        A basic usage of cond based on data dependent predicate.
        """
        def __init__(self):
            super().__init__()

        def forward(self, x: torch.Tensor) -> torch.Tensor:
            return torch.cond(x.sum() > 4.0, true_fn, false_fn, (x,))

The exported program we get after export:

.. code-block::

    class GraphModule(torch.nn.Module):
        def forward(self, arg0_1: f32[s0, 3]):
            sum_1: f32[] = torch.ops.aten.sum.default(arg0_1)
            gt: b8[] = torch.ops.aten.gt.Scalar(sum_1, 4.0);  sum_1 = None

            true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            conditional: f32[s0, 3] = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [arg0_1]);  gt = true_graph_0 = false_graph_0 = arg0_1 = None
            return (conditional,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: f32[s0, 3]):
                cos: f32[s0, 3] = torch.ops.aten.cos.default(arg0_1)
                sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None
                add: f32[s0, 3] = torch.ops.aten.add.Tensor(cos, sin);  cos = sin = None
                return add

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: f32[s0, 3]):
                sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None
                return sin


Invariants of torch.ops.higher_order.cond
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are several useful invariants for `torch.ops.higher_order.cond`:

- For predicate:
    - Dynamicness of predicate is preserved (e.g. `gt` shown in the above example)
    - If the predicate in user-program is constant (e.g. a python bool constant), the `pred` of the operator will be a constant.

- For branches:
    - The input and output signature will be a flattened tuple.
    - They are `torch.fx.GraphModule`.
    - Closures in original function becomes explicit inputs. No closures.
    - No mutations on inputs or globals are allowed.

- For operands:
    - It will also be a flat tuple.

- Nesting of `torch.cond` in user program becomes nested graph modules.


API Reference
-------------
.. autofunction:: torch._higher_order_ops.cond.cond