1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
|
.. _torch.export:
torch.export
=====================
.. warning::
This feature is a prototype under active development and there WILL BE
BREAKING CHANGES in the future.
Overview
--------
:func:`torch.export.export` takes an arbitrary Python callable (a
:class:`torch.nn.Module`, a function or a method) and produces a traced graph
representing only the Tensor computation of the function in an Ahead-of-Time
(AOT) fashion, which can subsequently be executed with different outputs or
serialized.
::
import torch
from torch.export import export
class Mod(torch.nn.Module):
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
a = torch.sin(x)
b = torch.cos(y)
return a + b
example_args = (torch.randn(10, 10), torch.randn(10, 10))
exported_program: torch.export.ExportedProgram = export(
Mod(), args=example_args
)
print(exported_program)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[10, 10]", y: "f32[10, 10]"):
# code: a = torch.sin(x)
sin: "f32[10, 10]" = torch.ops.aten.sin.default(x)
# code: b = torch.cos(y)
cos: "f32[10, 10]" = torch.ops.aten.cos.default(y)
# code: return a + b
add: f32[10, 10] = torch.ops.aten.add.Tensor(sin, cos)
return (add,)
Graph signature:
ExportGraphSignature(
input_specs=[
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='x'),
target=None,
persistent=None
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='y'),
target=None,
persistent=None
)
],
output_specs=[
OutputSpec(
kind=<OutputKind.USER_OUTPUT: 1>,
arg=TensorArgument(name='add'),
target=None
)
]
)
Range constraints: {}
``torch.export`` produces a clean intermediate representation (IR) with the
following invariants. More specifications about the IR can be found
:ref:`here <export.ir_spec>`.
* **Soundness**: It is guaranteed to be a sound representation of the original
program, and maintains the same calling conventions of the original program.
* **Normalized**: There are no Python semantics within the graph. Submodules
from the original programs are inlined to form one fully flattened
computational graph.
* **Graph properties**: The graph is purely functional, meaning it does not
contain operations with side effects such as mutations or aliasing. It does
not mutate any intermediate values, parameters, or buffers.
* **Metadata**: The graph contains metadata captured during tracing, such as a
stacktrace from user's code.
Under the hood, ``torch.export`` leverages the following latest technologies:
* **TorchDynamo (torch._dynamo)** is an internal API that uses a CPython feature
called the Frame Evaluation API to safely trace PyTorch graphs. This
provides a massively improved graph capturing experience, with much fewer
rewrites needed in order to fully trace the PyTorch code.
* **AOT Autograd** provides a functionalized PyTorch graph and ensures the graph
is decomposed/lowered to the ATen operator set.
* **Torch FX (torch.fx)** is the underlying representation of the graph,
allowing flexible Python-based transformations.
Existing frameworks
^^^^^^^^^^^^^^^^^^^
:func:`torch.compile` also utilizes the same PT2 stack as ``torch.export``, but
is slightly different:
* **JIT vs. AOT**: :func:`torch.compile` is a JIT compiler whereas
which is not intended to be used to produce compiled artifacts outside of
deployment.
* **Partial vs. Full Graph Capture**: When :func:`torch.compile` runs into an
untraceable part of a model, it will "graph break" and fall back to running
the program in the eager Python runtime. In comparison, ``torch.export`` aims
to get a full graph representation of a PyTorch model, so it will error out
when something untraceable is reached. Since ``torch.export`` produces a full
graph disjoint from any Python features or runtime, this graph can then be
saved, loaded, and run in different environments and languages.
* **Usability tradeoff**: Since :func:`torch.compile` is able to fallback to the
Python runtime whenever it reaches something untraceable, it is a lot more
flexible. ``torch.export`` will instead require users to provide more
information or rewrite their code to make it traceable.
Compared to :func:`torch.fx.symbolic_trace`, ``torch.export`` traces using
TorchDynamo which operates at the Python bytecode level, giving it the ability
to trace arbitrary Python constructs not limited by what Python operator
overloading supports. Additionally, ``torch.export`` keeps fine-grained track of
tensor metadata, so that conditionals on things like tensor shapes do not
fail tracing. In general, ``torch.export`` is expected to work on more user
programs, and produce lower-level graphs (at the ``torch.ops.aten`` operator
level). Note that users can still use :func:`torch.fx.symbolic_trace` as a
preprocessing step before ``torch.export``.
Compared to :func:`torch.jit.script`, ``torch.export`` does not capture Python
control flow or data structures, but it supports more Python language features
than TorchScript (as it is easier to have comprehensive coverage over Python
bytecodes). The resulting graphs are simpler and only have straight line control
flow (except for explicit control flow operators).
Compared to :func:`torch.jit.trace`, ``torch.export`` is sound: it is able to
trace code that performs integer computation on sizes and records all of the
side-conditions necessary to show that a particular trace is valid for other
inputs.
Exporting a PyTorch Model
-------------------------
An Example
^^^^^^^^^^
The main entrypoint is through :func:`torch.export.export`, which takes a
callable (:class:`torch.nn.Module`, function, or method) and sample inputs, and
captures the computation graph into an :class:`torch.export.ExportedProgram`. An
example:
::
import torch
from torch.export import export
# Simple module for demonstration
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=16, kernel_size=3, padding=1
)
self.relu = torch.nn.ReLU()
self.maxpool = torch.nn.MaxPool2d(kernel_size=3)
def forward(self, x: torch.Tensor, *, constant=None) -> torch.Tensor:
a = self.conv(x)
a.add_(constant)
return self.maxpool(self.relu(a))
example_args = (torch.randn(1, 3, 256, 256),)
example_kwargs = {"constant": torch.ones(1, 16, 256, 256)}
exported_program: torch.export.ExportedProgram = export(
M(), args=example_args, kwargs=example_kwargs
)
print(exported_program)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_weight: "f32[16, 3, 3, 3]", p_conv_bias: "f32[16]", x: "f32[1, 3, 256, 256]", constant: "f32[1, 16, 256, 256]"):
# code: a = self.conv(x)
conv2d: "f32[1, 16, 256, 256]" = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias, [1, 1], [1, 1])
# code: a.add_(constant)
add_: "f32[1, 16, 256, 256]" = torch.ops.aten.add_.Tensor(conv2d, constant)
# code: return self.maxpool(self.relu(a))
relu: "f32[1, 16, 256, 256]" = torch.ops.aten.relu.default(add_)
max_pool2d: "f32[1, 16, 85, 85]" = torch.ops.aten.max_pool2d.default(relu, [3, 3], [3, 3])
return (max_pool2d,)
Graph signature:
ExportGraphSignature(
input_specs=[
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_conv_weight'),
target='conv.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_conv_bias'),
target='conv.bias',
persistent=None
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='x'),
target=None,
persistent=None
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='constant'),
target=None,
persistent=None
)
],
output_specs=[
OutputSpec(
kind=<OutputKind.USER_OUTPUT: 1>,
arg=TensorArgument(name='max_pool2d'),
target=None
)
]
)
Range constraints: {}
Inspecting the ``ExportedProgram``, we can note the following:
* The :class:`torch.fx.Graph` contains the computation graph of the original
program, along with records of the original code for easy debugging.
* The graph contains only ``torch.ops.aten`` operators found `here <https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/native_functions.yaml>`__
and custom operators, and is fully functional, without any inplace operators
such as ``torch.add_``.
* The parameters (weight and bias to conv) are lifted as inputs to the graph,
resulting in no ``get_attr`` nodes in the graph, which previously existed in
the result of :func:`torch.fx.symbolic_trace`.
* The :class:`torch.export.ExportGraphSignature` models the input and output
signature, along with specifying which inputs are parameters.
* The resulting shape and dtype of tensors produced by each node in the graph is
noted. For example, the ``convolution`` node will result in a tensor of dtype
``torch.float32`` and shape (1, 16, 256, 256).
.. _Non-Strict Export:
Non-Strict Export
^^^^^^^^^^^^^^^^^
In PyTorch 2.3, we introduced a new mode of tracing called **non-strict mode**.
It's still going through hardening, so if you run into any issues, please file
them to Github with the "oncall: export" tag.
In *non-strict mode*, we trace through the program using the Python interpreter.
Your code will execute exactly as it would in eager mode; the only difference is
that all Tensor objects will be replaced by ProxyTensors, which will record all
their operations into a graph.
In *strict* mode, which is currently the default, we first trace through the
program using TorchDynamo, a bytecode analysis engine. TorchDynamo does not
actually execute your Python code. Instead, it symbolically analyzes it and
builds a graph based on the results. This analysis allows torch.export to
provide stronger guarantees about safety, but not all Python code is supported.
An example of a case where one might want to use non-strict mode is if you run
into a unsupported TorchDynamo feature that might not be easily solved, and you
know the python code is not exactly needed for computation. For example:
::
import contextlib
import torch
class ContextManager():
def __init__(self):
self.count = 0
def __enter__(self):
self.count += 1
def __exit__(self, exc_type, exc_value, traceback):
self.count -= 1
class M(torch.nn.Module):
def forward(self, x):
with ContextManager():
return x.sin() + x.cos()
export(M(), (torch.ones(3, 3),), strict=False) # Non-strict traces successfully
export(M(), (torch.ones(3, 3),)) # Strict mode fails with torch._dynamo.exc.Unsupported: ContextManager
In this example, the first call using non-strict mode (through the
``strict=False`` flag) traces successfully whereas the second call using strict
mode (default) results with a failure, where TorchDynamo is unable to support
context managers. One option is to rewrite the code (see :ref:`Limitations of torch.export <Limitations of
torch.export>`), but seeing as the context manager does not affect the tensor
computations in the model, we can go with the non-strict mode's result.
.. _Training Export:
Export for Training and Inference
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In PyTorch 2.5, we introduced a new API called :func:`export_for_training`.
It's still going through hardening, so if you run into any issues, please file
them to Github with the "oncall: export" tag.
In this API, we produce the most generic IR that contains all ATen operators
(including both functional and non-functional) which can be used to train in
eager PyTorch Autograd. This API is intended for eager training use cases such as PT2 Quantization
and will soon be the default IR of torch.export.export. To read further about
the motivation behind this change, please refer to
https://dev-discuss.pytorch.org/t/why-pytorch-does-not-need-a-new-standardized-operator-set/2206
When this API is combined with :func:`run_decompositions()`, you should be able to get inference IR with
any desired decomposition behavior.
To show some examples:
::
class ConvBatchnorm(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(1, 3, 1, 1)
self.bn = torch.nn.BatchNorm2d(3)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return (x,)
mod = ConvBatchnorm()
inp = torch.randn(1, 1, 3, 3)
ep_for_training = torch.export.export_for_training(mod, (inp,))
print(ep_for_training)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_weight: "f32[3, 1, 1, 1]", p_conv_bias: "f32[3]", p_bn_weight: "f32[3]", p_bn_bias: "f32[3]", b_bn_running_mean: "f32[3]", b_bn_running_var: "f32[3]", b_bn_num_batches_tracked: "i64[]", x: "f32[1, 1, 3, 3]"):
conv2d: "f32[1, 3, 3, 3]" = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias)
add_: "i64[]" = torch.ops.aten.add_.Tensor(b_bn_num_batches_tracked, 1)
batch_norm: "f32[1, 3, 3, 3]" = torch.ops.aten.batch_norm.default(conv2d, p_bn_weight, p_bn_bias, b_bn_running_mean, b_bn_running_var, True, 0.1, 1e-05, True)
return (batch_norm,)
Graph signature:
ExportGraphSignature(
input_specs=[
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_conv_weight'),
target='conv.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_conv_bias'),
target='conv.bias',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_bn_weight'),
target='bn.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_bn_bias'),
target='bn.bias',
persistent=None
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_running_mean'),
target='bn.running_mean',
persistent=True
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_running_var'),
target='bn.running_var',
persistent=True
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_num_batches_tracked'),
target='bn.num_batches_tracked',
persistent=True
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='x'),
target=None,
persistent=None
)
],
output_specs=[
OutputSpec(
kind=<OutputKind.USER_OUTPUT: 1>,
arg=TensorArgument(name='batch_norm'),
target=None
)
]
)
Range constraints: {}
From the above output, you can see that :func:`export_for_training` produces pretty much the same ExportedProgram
as :func:`export` except for the operators in the graph. You can see that we captured batch_norm in the most general
form. This op is non-functional and will be lowered to different ops when running inference.
You can also go from this IR to an inference IR via :func:`run_decompositions` with arbitrary customizations.
::
# Lower to core aten inference IR, but keep conv2d
decomp_table = torch.export.default_decompositions()
del decomp_table[torch.ops.aten.conv2d.default]
ep_for_inference = ep_for_training.run_decompositions(decomp_table)
print(ep_for_inference)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_weight: "f32[3, 1, 1, 1]", p_conv_bias: "f32[3]", p_bn_weight: "f32[3]", p_bn_bias: "f32[3]", b_bn_running_mean: "f32[3]", b_bn_running_var: "f32[3]", b_bn_num_batches_tracked: "i64[]", x: "f32[1, 1, 3, 3]"):
conv2d: "f32[1, 3, 3, 3]" = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias)
add: "i64[]" = torch.ops.aten.add.Tensor(b_bn_num_batches_tracked, 1)
_native_batch_norm_legit_functional = torch.ops.aten._native_batch_norm_legit_functional.default(conv2d, p_bn_weight, p_bn_bias, b_bn_running_mean, b_bn_running_var, True, 0.1, 1e-05)
getitem: "f32[1, 3, 3, 3]" = _native_batch_norm_legit_functional[0]
getitem_3: "f32[3]" = _native_batch_norm_legit_functional[3]
getitem_4: "f32[3]" = _native_batch_norm_legit_functional[4]
return (getitem_3, getitem_4, add, getitem)
Graph signature:
ExportGraphSignature(
input_specs=[
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_conv_weight'),
target='conv.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_conv_bias'),
target='conv.bias',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_bn_weight'),
target='bn.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_bn_bias'),
target='bn.bias',
persistent=None
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_running_mean'),
target='bn.running_mean',
persistent=True
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_running_var'),
target='bn.running_var',
persistent=True
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_num_batches_tracked'),
target='bn.num_batches_tracked',
persistent=True
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='x'),
target=None,
persistent=None
)
],
output_specs=[
OutputSpec(
kind=<OutputKind.BUFFER_MUTATION: 3>,
arg=TensorArgument(name='getitem_3'),
target='bn.running_mean'
),
OutputSpec(
kind=<OutputKind.BUFFER_MUTATION: 3>,
arg=TensorArgument(name='getitem_4'),
target='bn.running_var'
),
OutputSpec(
kind=<OutputKind.BUFFER_MUTATION: 3>,
arg=TensorArgument(name='add'),
target='bn.num_batches_tracked'
),
OutputSpec(
kind=<OutputKind.USER_OUTPUT: 1>,
arg=TensorArgument(name='getitem'),
target=None
)
]
)
Range constraints: {}
Here you can see that we kept ``conv2d`` op in the IR while decomposing the rest. Now the IR is a functional IR
containing core aten operators except for ``conv2d``.
You can do even more customization by directly registering your chosen decomposition behaviors.
You can do even more customizations by directly registering custom decomp behaviour
::
# Lower to core aten inference IR, but customize conv2d
decomp_table = torch.export.default_decompositions()
def my_awesome_custom_conv2d_function(x, weight, bias, stride=[1, 1], padding=[0, 0], dilation=[1, 1], groups=1):
return 2 * torch.ops.aten.convolution(x, weight, bias, stride, padding, dilation, False, [0, 0], groups)
decomp_table[torch.ops.aten.conv2d.default] = my_awesome_conv2d_function
ep_for_inference = ep_for_training.run_decompositions(decomp_table)
print(ep_for_inference)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_weight: "f32[3, 1, 1, 1]", p_conv_bias: "f32[3]", p_bn_weight: "f32[3]", p_bn_bias: "f32[3]", b_bn_running_mean: "f32[3]", b_bn_running_var: "f32[3]", b_bn_num_batches_tracked: "i64[]", x: "f32[1, 1, 3, 3]"):
convolution: "f32[1, 3, 3, 3]" = torch.ops.aten.convolution.default(x, p_conv_weight, p_conv_bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1)
mul: "f32[1, 3, 3, 3]" = torch.ops.aten.mul.Tensor(convolution, 2)
add: "i64[]" = torch.ops.aten.add.Tensor(b_bn_num_batches_tracked, 1)
_native_batch_norm_legit_functional = torch.ops.aten._native_batch_norm_legit_functional.default(mul, p_bn_weight, p_bn_bias, b_bn_running_mean, b_bn_running_var, True, 0.1, 1e-05)
getitem: "f32[1, 3, 3, 3]" = _native_batch_norm_legit_functional[0]
getitem_3: "f32[3]" = _native_batch_norm_legit_functional[3]
getitem_4: "f32[3]" = _native_batch_norm_legit_functional[4];
return (getitem_3, getitem_4, add, getitem)
Graph signature:
ExportGraphSignature(
input_specs=[
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_conv_weight'),
target='conv.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_conv_bias'),
target='conv.bias',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_bn_weight'),
target='bn.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_bn_bias'),
target='bn.bias',
persistent=None
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_running_mean'),
target='bn.running_mean',
persistent=True
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_running_var'),
target='bn.running_var',
persistent=True
),
InputSpec(
kind=<InputKind.BUFFER: 3>,
arg=TensorArgument(name='b_bn_num_batches_tracked'),
target='bn.num_batches_tracked',
persistent=True
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='x'),
target=None,
persistent=None
)
],
output_specs=[
OutputSpec(
kind=<OutputKind.BUFFER_MUTATION: 3>,
arg=TensorArgument(name='getitem_3'),
target='bn.running_mean'
),
OutputSpec(
kind=<OutputKind.BUFFER_MUTATION: 3>,
arg=TensorArgument(name='getitem_4'),
target='bn.running_var'
),
OutputSpec(
kind=<OutputKind.BUFFER_MUTATION: 3>,
arg=TensorArgument(name='add'),
target='bn.num_batches_tracked'
),
OutputSpec(
kind=<OutputKind.USER_OUTPUT: 1>,
arg=TensorArgument(name='getitem'),
target=None
)
]
)
Range constraints: {}
Expressing Dynamism
^^^^^^^^^^^^^^^^^^^
By default ``torch.export`` will trace the program assuming all input shapes are
**static**, and specializing the exported program to those dimensions. However,
some dimensions, such as a batch dimension, can be dynamic and vary from run to
run. Such dimensions must be specified by using the
:func:`torch.export.Dim` API to create them and by passing them into
:func:`torch.export.export` through the ``dynamic_shapes`` argument. An example:
::
import torch
from torch.export import Dim, export
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.branch1 = torch.nn.Sequential(
torch.nn.Linear(64, 32), torch.nn.ReLU()
)
self.branch2 = torch.nn.Sequential(
torch.nn.Linear(128, 64), torch.nn.ReLU()
)
self.buffer = torch.ones(32)
def forward(self, x1, x2):
out1 = self.branch1(x1)
out2 = self.branch2(x2)
return (out1 + self.buffer, out2)
example_args = (torch.randn(32, 64), torch.randn(32, 128))
# Create a dynamic batch size
batch = Dim("batch")
# Specify that the first dimension of each input is that batch size
dynamic_shapes = {"x1": {0: batch}, "x2": {0: batch}}
exported_program: torch.export.ExportedProgram = export(
M(), args=example_args, dynamic_shapes=dynamic_shapes
)
print(exported_program)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_branch1_0_weight: "f32[32, 64]", p_branch1_0_bias: "f32[32]", p_branch2_0_weight: "f32[64, 128]", p_branch2_0_bias: "f32[64]", c_buffer: "f32[32]", x1: "f32[s0, 64]", x2: "f32[s0, 128]"):
# code: out1 = self.branch1(x1)
linear: "f32[s0, 32]" = torch.ops.aten.linear.default(x1, p_branch1_0_weight, p_branch1_0_bias)
relu: "f32[s0, 32]" = torch.ops.aten.relu.default(linear)
# code: out2 = self.branch2(x2)
linear_1: "f32[s0, 64]" = torch.ops.aten.linear.default(x2, p_branch2_0_weight, p_branch2_0_bias)
relu_1: "f32[s0, 64]" = torch.ops.aten.relu.default(linear_1)
# code: return (out1 + self.buffer, out2)
add: "f32[s0, 32]" = torch.ops.aten.add.Tensor(relu, c_buffer)
return (add, relu_1)
Graph signature:
ExportGraphSignature(
input_specs=[
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_branch1_0_weight'),
target='branch1.0.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_branch1_0_bias'),
target='branch1.0.bias',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_branch2_0_weight'),
target='branch2.0.weight',
persistent=None
),
InputSpec(
kind=<InputKind.PARAMETER: 2>,
arg=TensorArgument(name='p_branch2_0_bias'),
target='branch2.0.bias',
persistent=None
),
InputSpec(
kind=<InputKind.CONSTANT_TENSOR: 4>,
arg=TensorArgument(name='c_buffer'),
target='buffer',
persistent=True
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='x1'),
target=None,
persistent=None
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='x2'),
target=None,
persistent=None
)
],
output_specs=[
OutputSpec(
kind=<OutputKind.USER_OUTPUT: 1>,
arg=TensorArgument(name='add'),
target=None
),
OutputSpec(
kind=<OutputKind.USER_OUTPUT: 1>,
arg=TensorArgument(name='relu_1'),
target=None
)
]
)
Range constraints: {s0: VR[0, int_oo]}
Some additional things to note:
* Through the :func:`torch.export.Dim` API and the ``dynamic_shapes`` argument, we specified the first
dimension of each input to be dynamic. Looking at the inputs ``x1`` and
``x2``, they have a symbolic shape of (s0, 64) and (s0, 128), instead of
the (32, 64) and (32, 128) shaped tensors that we passed in as example inputs.
``s0`` is a symbol representing that this dimension can be a range
of values.
* ``exported_program.range_constraints`` describes the ranges of each symbol
appearing in the graph. In this case, we see that ``s0`` has the range
[0, int_oo]. For technical reasons that are difficult to explain here, they are
assumed to be not 0 or 1. This is not a bug, and does not necessarily mean
that the exported program will not work for dimensions 0 or 1. See
`The 0/1 Specialization Problem <https://docs.google.com/document/d/16VPOa3d-Liikf48teAOmxLc92rgvJdfosIy-yoT38Io/edit?fbclid=IwAR3HNwmmexcitV0pbZm_x1a4ykdXZ9th_eJWK-3hBtVgKnrkmemz6Pm5jRQ#heading=h.ez923tomjvyk>`_
for an in-depth discussion of this topic.
We can also specify more expressive relationships between input shapes, such as
where a pair of shapes might differ by one, a shape might be double of
another, or a shape is even. An example:
::
class M(torch.nn.Module):
def forward(self, x, y):
return x + y[1:]
x, y = torch.randn(5), torch.randn(6)
dimx = torch.export.Dim("dimx", min=3, max=6)
dimy = dimx + 1
exported_program = torch.export.export(
M(), (x, y), dynamic_shapes=({0: dimx}, {0: dimy}),
)
print(exported_program)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[s0]", y: "f32[s0 + 1]"):
# code: return x + y[1:]
slice_1: "f32[s0]" = torch.ops.aten.slice.Tensor(y, 0, 1, 9223372036854775807)
add: "f32[s0]" = torch.ops.aten.add.Tensor(x, slice_1)
return (add,)
Graph signature:
ExportGraphSignature(
input_specs=[
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='x'),
target=None,
persistent=None
),
InputSpec(
kind=<InputKind.USER_INPUT: 1>,
arg=TensorArgument(name='y'),
target=None,
persistent=None
)
],
output_specs=[
OutputSpec(
kind=<OutputKind.USER_OUTPUT: 1>,
arg=TensorArgument(name='add'),
target=None
)
]
)
Range constraints: {s0: VR[3, 6], s0 + 1: VR[4, 7]}
Some things to note:
* By specifying ``{0: dimx}`` for the first input, we see that the resulting
shape of the first input is now dynamic, being ``[s0]``. And now by specifying
``{0: dimy}`` for the second input, we see that the resulting shape of the
second input is also dynamic. However, because we expressed ``dimy = dimx + 1``,
instead of ``y``'s shape containing a new symbol, we see that it is
now being represented with the same symbol used in ``x``, ``s0``. We can
see that relationship of ``dimy = dimx + 1`` is being shown through ``s0 + 1``.
* Looking at the range constraints, we see that ``s0`` has the range [3, 6],
which is specified initially, and we can see that ``s0 + 1`` has the solved
range of [4, 7].
Serialization
^^^^^^^^^^^^^
To save the ``ExportedProgram``, users can use the :func:`torch.export.save` and
:func:`torch.export.load` APIs. A convention is to save the ``ExportedProgram``
using a ``.pt2`` file extension.
An example:
::
import torch
import io
class MyModule(torch.nn.Module):
def forward(self, x):
return x + 10
exported_program = torch.export.export(MyModule(), torch.randn(5))
torch.export.save(exported_program, 'exported_program.pt2')
saved_exported_program = torch.export.load('exported_program.pt2')
Specializations
^^^^^^^^^^^^^^^
A key concept in understanding the behavior of ``torch.export`` is the
difference between *static* and *dynamic* values.
A *dynamic* value is one that can change from run to run. These behave like
normal arguments to a Python function—you can pass different values for an
argument and expect your function to do the right thing. Tensor *data* is
treated as dynamic.
A *static* value is a value that is fixed at export time and cannot change
between executions of the exported program. When the value is encountered during
tracing, the exporter will treat it as a constant and hard-code it into the
graph.
When an operation is performed (e.g. ``x + y``) and all inputs are static, then
the output of the operation will be directly hard-coded into the graph, and the
operation won’t show up (i.e. it will get constant-folded).
When a value has been hard-coded into the graph, we say that the graph has been
*specialized* to that value.
The following values are static:
Input Tensor Shapes
~~~~~~~~~~~~~~~~~~~
By default, ``torch.export`` will trace the program specializing on the input
tensors' shapes, unless a dimension is specified as dynamic via the
``dynamic_shapes`` argument to ``torch.export``. This means that if there exists
shape-dependent control flow, ``torch.export`` will specialize on the branch
that is being taken with the given sample inputs. For example:
::
import torch
from torch.export import export
class Mod(torch.nn.Module):
def forward(self, x):
if x.shape[0] > 5:
return x + 1
else:
return x - 1
example_inputs = (torch.rand(10, 2),)
exported_program = export(Mod(), example_inputs)
print(exported_program)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[10, 2]"):
# code: return x + 1
add: "f32[10, 2]" = torch.ops.aten.add.Tensor(x, 1)
return (add,)
The conditional of (``x.shape[0] > 5``) does not appear in the
``ExportedProgram`` because the example inputs have the static
shape of (10, 2). Since ``torch.export`` specializes on the inputs' static
shapes, the else branch (``x - 1``) will never be reached. To preserve the dynamic
branching behavior based on the shape of a tensor in the traced graph,
:func:`torch.export.Dim` will need to be used to specify the dimension
of the input tensor (``x.shape[0]``) to be dynamic, and the source code will
need to be :ref:`rewritten <Data/Shape-Dependent Control Flow>`.
Note that tensors that are part of the module state (e.g. parameters and
buffers) always have static shapes.
Python Primitives
~~~~~~~~~~~~~~~~~
``torch.export`` also specializes on Python primtivies,
such as ``int``, ``float``, ``bool``, and ``str``. However they do have dynamic
variants such as ``SymInt``, ``SymFloat``, and ``SymBool``.
For example:
::
import torch
from torch.export import export
class Mod(torch.nn.Module):
def forward(self, x: torch.Tensor, const: int, times: int):
for i in range(times):
x = x + const
return x
example_inputs = (torch.rand(2, 2), 1, 3)
exported_program = export(Mod(), example_inputs)
print(exported_program)
.. code-block::
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[2, 2]", const, times):
# code: x = x + const
add: "f32[2, 2]" = torch.ops.aten.add.Tensor(x, 1)
add_1: "f32[2, 2]" = torch.ops.aten.add.Tensor(add, 1)
add_2: "f32[2, 2]" = torch.ops.aten.add.Tensor(add_1, 1)
return (add_2,)
Because integers are specialized, the ``torch.ops.aten.add.Tensor`` operations
are all computed with the hard-coded constant ``1``, rather than ``const``. If
a user passes a different value for ``const`` at runtime, like 2, than the one used
during export time, 1, this will result in an error.
Additionally, the ``times`` iterator used in the ``for`` loop is also "inlined"
in the graph through the 3 repeated ``torch.ops.aten.add.Tensor`` calls, and the
input ``times`` is never used.
Python Containers
~~~~~~~~~~~~~~~~~
Python containers (``List``, ``Dict``, ``NamedTuple``, etc.) are considered to
have static structure.
.. _Limitations of torch.export:
Limitations of torch.export
---------------------------
Graph Breaks
^^^^^^^^^^^^
As ``torch.export`` is a one-shot process for capturing a computation graph from
a PyTorch program, it might ultimately run into untraceable parts of programs as
it is nearly impossible to support tracing all PyTorch and Python features. In
the case of ``torch.compile``, an unsupported operation will cause a "graph
break" and the unsupported operation will be run with default Python evaluation.
In contrast, ``torch.export`` will require users to provide additional
information or rewrite parts of their code to make it traceable. As the
tracing is based on TorchDynamo, which evaluates at the Python
bytecode level, there will be significantly fewer rewrites required compared to
previous tracing frameworks.
When a graph break is encountered, :ref:`ExportDB <torch.export_db>` is a great
resource for learning about the kinds of programs that are supported and
unsupported, along with ways to rewrite programs to make them traceable.
An option to get past dealing with this graph breaks is by using
:ref:`non-strict export <Non-Strict Export>`
.. _Data/Shape-Dependent Control Flow:
Data/Shape-Dependent Control Flow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Graph breaks can also be encountered on data-dependent control flow (``if
x.shape[0] > 2``) when shapes are not being specialized, as a tracing compiler cannot
possibly deal with without generating code for a combinatorially exploding
number of paths. In such cases, users will need to rewrite their code using
special control flow operators. Currently, we support :ref:`torch.cond <cond>`
to express if-else like control flow (more coming soon!).
Missing Fake/Meta/Abstract Kernels for Operators
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When tracing, a FakeTensor kernel (aka meta kernel, abstract impl) is
required for all operators. This is used to reason about the input/output shapes
for this operator.
Please see :func:`torch.library.register_fake` for more details.
In the unfortunate case where your model uses an ATen operator that is does not
have a FakeTensor kernel implementation yet, please file an issue.
Read More
---------
.. toctree::
:caption: Additional Links for Export Users
:maxdepth: 1
export.ir_spec
torch.compiler_transformations
torch.compiler_ir
generated/exportdb/index
cond
.. toctree::
:caption: Deep Dive for PyTorch Developers
:maxdepth: 1
torch.compiler_dynamo_overview
torch.compiler_dynamo_deepdive
torch.compiler_dynamic_shapes
torch.compiler_fake_tensor
API Reference
-------------
.. automodule:: torch.export
.. autofunction:: export
.. autofunction:: save
.. autofunction:: load
.. autofunction:: register_dataclass
.. autofunction:: torch.export.dynamic_shapes.Dim
.. autofunction:: torch.export.exported_program.default_decompositions
.. autofunction:: dims
.. autoclass:: torch.export.dynamic_shapes.ShapesCollection
.. automethod:: dynamic_shapes
.. autofunction:: torch.export.dynamic_shapes.refine_dynamic_shapes_from_suggested_fixes
.. autoclass:: Constraint
.. autoclass:: ExportedProgram
.. automethod:: module
.. automethod:: buffers
.. automethod:: named_buffers
.. automethod:: parameters
.. automethod:: named_parameters
.. automethod:: run_decompositions
.. autoclass:: ExportBackwardSignature
.. autoclass:: ExportGraphSignature
.. autoclass:: ModuleCallSignature
.. autoclass:: ModuleCallEntry
.. automodule:: torch.export.decomp_utils
.. autoclass:: CustomDecompTable
.. automethod:: copy
.. automethod:: items
.. automethod:: keys
.. automethod:: materialize
.. automethod:: pop
.. automethod:: update
.. automodule:: torch.export.exported_program
.. automodule:: torch.export.graph_signature
.. autoclass:: InputKind
.. autoclass:: InputSpec
.. autoclass:: OutputKind
.. autoclass:: OutputSpec
.. autoclass:: SymIntArgument
.. autoclass:: SymBoolArgument
.. autoclass:: SymFloatArgument
.. autoclass:: ExportGraphSignature
.. automethod:: replace_all_uses
.. automethod:: get_replace_hook
.. autoclass:: torch.export.graph_signature.CustomObjArgument
.. py:module:: torch.export.dynamic_shapes
.. automodule:: torch.export.unflatten
:members:
.. automodule:: torch.export.custom_obj
.. automodule:: torch.export.experimental
.. automodule:: torch.export.passes
.. autofunction:: torch.export.passes.move_to_device_pass
|