1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
.. _func-autograd-function:
Extending torch.func with autograd.Function
===========================================
.. currentmodule:: torch.autograd
So you'd like to use :class:`torch.autograd.Function` with the :mod:`torch.func`
transforms like :func:`torch.vmap`, :func:`torch.func.grad`, etc.
There are two main use cases:
- you wish to call code that does not contain PyTorch operations and
have it work with function transforms. That is, the :class:`torch.autograd.Function`'s
forward/backward/etc calls into functions from other systems like C++, CUDA, numpy.
- you wish to specify custom gradient rules, like
JAX's `custom_vjp/custom_jvp <https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html>`_
PyTorch combines both of these concepts into :class:`torch.autograd.Function`.
Basic Usage
-----------
This guide assumes you are familiar with :ref:`extending-autograd`,
which explains how to use :class:`torch.autograd.Function`.
:class:`torch.autograd.Function` can either have a :meth:`~Function.forward` that accepts a ctx object,
or it can have separate :meth:`~Function.forward` (that does not accept ``ctx``) and a :meth:`~Function.setup_context`
staticmethod that modifies the ``ctx`` object.
Only the latter is supported with function transforms:
- :meth:`~Function.forward` is the code that performs the operation and it should not accept
a ``ctx`` object.
- ``setup_context(ctx, inputs, output)`` is the code where you can
call methods on ``ctx``. Here is where you should save Tensors for backward
(by calling ``ctx.save_for_backward(*tensors)``), or save non-Tensors
(by assigning them to the ``ctx`` object).
Because :meth:`~Function.setup_context` accepts only ``inputs`` and ``output``,
the only quantities that can be saved are either objects (such as Tensors) in
the inputs or outputs or quantities (like ``Tensor.shape``) derived from them.
If you wish to save a non-input intermediate activation from
:meth:`Function.forward` for backward, then you'll need to return it as an
output from :meth:`~Function.forward` so that it gets passed to
:meth:`~Function.setup_context`.
Depending on the transform,
- to support reverse-mode AD (:func:`torch.func.grad`, :func:`torch.func.vjp`),
the :class:`torch.autograd.Function` needs a :meth:`~Function.backward` staticmethod.
- to support :func:`torch.vmap`, the :class:`torch.autograd.Function` needs a :meth:`~Function.vmap` staticmethod.
- to support :func:`torch.func.jvp`, the :class:`torch.autograd.Function` needs a :meth:`~Function.jvp` staticmethod.
- to support compositions of transforms (like :func:`torch.func.jacrev`,
:func:`torch.func.jacfwd`, :func:`torch.func.hessian`) -- you may need multiple
of the above.
In order for the :class:`torch.autograd.Function` to be arbitrarily composable with function
transforms, we recommend that all other staticmethods other than :meth:`~Function.forward` and
:meth:`~Function.setup_context` must be transformable: that is, they must consist of only PyTorch
operators or call other :class:`torch.autograd.Function` (that may call into C++/CUDA/etc).
Let's go over some examples of common use cases.
Example 1: autograd.Function calls into another system
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A common case is a :class:`torch.autograd.Function` with both forward() and backward() calling
into another system (like C++, CUDA, numpy, triton).
::
import torch
import numpy as np
def to_numpy(tensor):
return tensor.cpu().numpy()
class NumpySort(torch.autograd.Function):
# Note that forward does not take ctx
@staticmethod
def forward(x, dim):
device = x.device
x = to_numpy(x)
ind = np.argsort(x, axis=dim)
ind_inv = np.argsort(ind, axis=dim)
result = np.take_along_axis(x, ind, axis=dim)
# Any intermediates to be saved in backward must be returned as
# outputs.
return (
# The desired output
torch.tensor(result, device=device),
# intermediate to save for backward
torch.tensor(ind, device=device),
# intermediate to save for backward
torch.tensor(ind_inv, device=device),
)
# setup_context is responsible for calling methods and/or assigning to
# the ctx object. Please do not do additional compute (e.g. add
# Tensors together) in setup_context.
@staticmethod
def setup_context(ctx, inputs, output):
x, dim = inputs
# Note that output is whatever you returned from forward.
# If you returned multiple values, then output is a Tuple of multiple values.
# If you returned a single Tensor, then output is a Tensor.
# If you returned a Tuple with a single Tensor, then output is a
# Tuple with a single Tensor.
_, ind, ind_inv = output
ctx.mark_non_differentiable(ind, ind_inv)
# Tensors must be saved via ctx.save_for_backward. Please do not
# assign them directly onto the ctx object.
ctx.save_for_backward(ind, ind_inv)
# Non-tensors may be saved by assigning them as attributes on the ctx object.
ctx.dim = dim
@staticmethod
def backward(ctx, grad_output, _0, _1):
# For the autograd.Function to be arbitrarily composable with function
# transforms, all staticmethod other than forward and setup_context
# must be implemented in a "transformable" way; that is, they must
# only consist of PyTorch operations or autograd.Function.
#
# For example, this allows us to do double backwards and/or compute
# second order gradients.
#
# We've written the backward pass of NumpySort in terms of another
# autograd.Function, NumpyTake.
ind, ind_inv = ctx.saved_tensors
return NumpyTake.apply(grad_output, ind_inv, ind, ctx.dim), None
class NumpyTake(torch.autograd.Function):
@staticmethod
def forward(x, ind, ind_inv, dim):
device = x.device
x = to_numpy(x)
ind = to_numpy(ind)
return torch.tensor(np.take_along_axis(x, ind, dim), device=device)
@staticmethod
def setup_context(ctx, inputs, output):
x, ind, ind_inv, dim = inputs
ctx.save_for_backward(ind, ind_inv)
ctx.dim = dim
@staticmethod
def backward(ctx, grad_output):
ind, ind_inv = ctx.saved_tensors
result = NumpyTake.apply(grad_output, ind_inv, ind, ctx.dim)
return result, None, None, None
Now, to make it easier to use ``NumpySort`` (to hide away the intermediates we
returned as outputs, as well as allow default args and kwargs), we create a new
function that invokes it::
def numpy_sort(x, dim=-1):
result, _, _ = NumpySort.apply(x, dim)
return result
And here's a sanity check::
x = torch.randn(2, 3)
grad_x = torch.func.grad(lambda x: numpy_sort(x).sum())(x)
assert torch.allclose(grad_x, torch.ones_like(x))
Example 2: autograd.Function specifies custom gradient rules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another common case is an :class:`torch.autograd.Function` that is implemented with PyTorch
operations. PyTorch is able to compute gradients for PyTorch operations automatically,
but perhaps we wish to customize how the gradients are computed. Some reasons why
we may want a custom backward different from the one PyTorch gives us are:
- improving numeric stability
- changing the performance characteristics of the backward
- changing how edge cases are handled (e.g. nans, inf)
- modifying the gradient (e.g. gradient clipping)
Here's an example of an :class:`torch.autograd.Function` for the function ``y = x ** 3`` where we
change the performance characteristics (some computation that would normally happen
during the backward pass, computing dx, happens in the forward pass).
::
class MyCube(torch.autograd.Function):
@staticmethod
def forward(x):
result = x ** 3
# In regular PyTorch, if we had just run y = x ** 3, then the backward
# pass computes dx = 3 * x ** 2. In this autograd.Function, we've done
# that computation here in the forward pass instead.
dx = 3 * x ** 2
return result, dx
@staticmethod
def setup_context(ctx, inputs, output):
x, = inputs
result, dx = output
ctx.save_for_backward(x, dx)
@staticmethod
def backward(ctx, grad_output, grad_dx):
x, dx = ctx.saved_tensors
# In order for the autograd.Function to work with higher-order
# gradients, we must add the gradient contribution of `dx`.
result = grad_output * dx + grad_dx * 6 * x
return result
Now, to make it easier to use ``NumpySort`` (and hide away the intermediates we
returned as outputs) we create a new function that invokes it::
def my_cube(x):
result, _ = MyCube.apply(x)
return result
Here's a sanity check computing the second-order gradients::
x = torch.randn([])
ggx = torch.func.grad(torch.func.grad(my_cube))(x)
assert torch.allclose(ggx, 6 * x)
Limitations and gotchas
^^^^^^^^^^^^^^^^^^^^^^^
.. warning::
Please read these limitations of :class:`torch.autograd.Function` with torch.func transforms
carefully. We are not able to catch many of these situations and error out
gracefully so they will lead to undefined behavior.
Please do not capture Tensors that are being transformed over, have
requires_grad=True, or are dual tensors, into the methods of the
:class:`torch.autograd.Function`. The way to be completely safe is to ensure that the only
Tensors being used inside any method of the :class:`torch.autograd.Function` must be directly
passed as inputs (or via the ctx object) rather than come from outside
the :class:`torch.autograd.Function`.
:class:`torch.autograd.Function` does not handle Tensors in pytrees (arbitrary nested
Python data structures that may or may not contain Tensors). For
those Tensors to be tracked by autograd, they must be passed directly as
an argument to :class:`torch.autograd.Function`. This is in contrast to
jax.{custom_vjp, custom_jvp}, which do accept pytrees.
Please only use :meth:`~torch.autograd.function.FunctionCtx.save_for_backward` or
:meth:`~torch.autograd.function.FunctionCtx.save_for_forward` to save Tensors.
Please do not assign Tensors or collections of Tensors directly onto the ctx object -
these Tensors will not get tracked
:func:`torch.vmap` Support
--------------------------
To use an :class:`torch.autograd.Function` with :func:`torch.vmap`, you must either:
- provide a :meth:`~Function.vmap` staticmethod that tells us the behavior of the :class:`torch.autograd.Function`
under :func:`torch.vmap`
- ask us to autogenerate it by setting ``generate_vmap_rule=True``.
Automatically generate a vmap rule
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If your :class:`torch.autograd.Function` fulfills the following additional constraints, then we
are able to generate a vmap rule for it. If it doesn't fulfill the constraints or if you
want custom behavior under vmap, please manually define a vmap staticmethod (see next section).
.. warning::
We are not easily able to check for the following constraints and error
out gracefully. Violation of the constraints may lead to undefined
behavior.
- The :class:`torch.autograd.Function`'s :meth:`~Function.forward`, :meth:`~Function.backward` (if it exists) and :meth:`~Function.jvp`
(if it exists) staticmethods must be transformable via :func:`torch.vmap`. That
is, they must consist of only PyTorch operations (as opposed to e.g. NumPy or custom
CUDA kernels).
Example::
class MyCube(torch.autograd.Function):
# Set generate_vmap_rule to True to ask PyTorch to automatically generate
# a vmap rule.
generate_vmap_rule = True
@staticmethod
def forward(x):
result = x ** 3
dx = 3 * x ** 2
return result, dx
@staticmethod
def setup_context(ctx, inputs, output):
x, = inputs
result, dx = output
ctx.save_for_backward(x, dx)
@staticmethod
def backward(ctx, grad_output, grad_dx):
x, dx = ctx.saved_tensors
result = grad_output * dx + grad_dx * 6 * x
return result
def my_cube(x):
result, dx = MyCube.apply(x)
return result
x = torch.randn(3)
result = torch.vmap(my_cube)(x)
assert torch.allclose(result, x ** 3)
Defining the vmap staticmethod
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If your :class:`torch.autograd.Function` calls into another system (like NumPy, C++, CUDA, triton),
then to get it to work with :func:`torch.vmap` or transforms that use it, you'll
need to manually define a :meth:`~Function.vmap` staticmethod.
Depending on what transforms you want to use and your use case, you may not need
to add a :meth:`~Function.vmap` staticmethod to all of your :class:`torch.autograd.Function`:
- For example, :func:`torch.func.jacrev` performs :func:`~torch.vmap` over the backward pass.
So if you're only interested in using :func:`torch.func.jacrev`, only
the :meth:`~Function.backward` staticmethod needs to be vmappable.
We do recommend ensuring all of your :class:`torch.autograd.Function` have support for
:func:`torch.vmap` though, especially if you are writing a third-party library and you want your
:class:`torch.autograd.Function` to work with all combinations of :func:`torch.func` transforms.
Conceptually, the vmap staticmethod is responsible for defining how the :meth:`~Function.forward`
should behave under :func:`torch.vmap`. That is, it defines how to transform
the :meth:`~Function.forward` to run over inputs with an additional dimension (the dimension
being vmapped over). This is similar to how :func:`torch.vmap` is implemented over
PyTorch operations: for each operation, we define a vmap rule (sometimes also
referred to as a "batching rule").
Here's how to define the :meth:`~Function.vmap` staticmethod:
- the signature is ``vmap(info, in_dims: Tuple[Optional[int]], *args)``, where
``*args`` is the same as the args to :meth:`~Function.forward`.
- The vmap staticmethod is responsible for defining how the :meth:`~Function.forward` should behave
under :func:`torch.vmap`. That is, given inputs with an additional dimension
(specified by ``in_dims``), how do we compute the batched version of :meth:`~Function.forward`?
- For each arg in ``args``, ``in_dims`` has a corresponding ``Optional[int]``.
It is ``None`` if the arg is not a Tensor or if the arg is not being vmapped over,
otherwise, it is an integer specifying what dimension of the Tensor is being vmapped
over.
- ``info`` is a collection of additional metadata that may be helpful:
``info.batch_size`` specifies the size of the dimension being vmapped over, while
``info.randomness`` is the ``randomness`` option that was passed to :func:`torch.vmap`.
- The return of the vmap staticmethod is a tuple of ``(output, out_dims)``. Similar
to ``in_dims``, ``out_dims`` should be of the same structure as ``output`` and contain
one ``out_dim`` per output that specifies if the output has the vmapped
dimension and what index it is in.
Example::
def to_numpy(tensor):
return tensor.cpu().numpy()
class NumpySort(torch.autograd.Function):
@staticmethod
def forward(x, dim):
device = x.device
x = to_numpy(x)
ind = np.argsort(x, axis=dim)
ind_inv = np.argsort(ind, axis=dim)
result = np.take_along_axis(x, ind, axis=dim)
return (
torch.tensor(result, device=device),
torch.tensor(ind, device=device),
torch.tensor(ind_inv, device=device),
)
@staticmethod
def setup_context(ctx, inputs, output):
x, dim = inputs
_, ind, ind_inv = output
ctx.mark_non_differentiable(ind, ind_inv)
ctx.save_for_backward(ind, ind_inv)
ctx.dim = dim
@staticmethod
def backward(ctx, grad_output, _0, _1):
ind, ind_inv = ctx.saved_tensors
return NumpyTake.apply(grad_output, ind_inv, ind, ctx.dim), None
# The signature of the vmap staticmethod is:
# vmap(info, in_dims: Tuple[Optional[int]], *args)
# where *args is the same as the arguments to `forward`.
@staticmethod
def vmap(info, in_dims, x, dim):
# For every input (x and dim), in_dims stores an Optional[int]
# that is:
# - None if the input is not being vmapped over or if the input
# is not a Tensor
# - an integer if the input is being vmapped over that represents
# the index of the dimension being vmapped over.
x_bdim, _ = in_dims
# A "vmap rule" is the logic of how to perform the operation given
# inputs with one additional dimension. In NumpySort, x has an
# additional dimension (x_bdim). The vmap rule is simply
# to call NumpySort again but pass it a different `dim`.
x = x.movedim(x_bdim, 0)
# Handle negative dims correctly
dim = dim if dim >= 0 else dim + x.dim() - 1
result = NumpySort.apply(x, dim + 1)
# The vmap rule must return a tuple of two things
# 1. the output. Should be the same amount of things
# as returned by the forward().
# 2. one Optional[int] for each output specifying if each output
# is being vmapped over, and if so, the index of the
# dimension being vmapped over.
#
# NumpySort.forward returns a Tuple of 3 Tensors. Since we moved the
# dimension being vmapped over to the front of `x`, that appears at
# dimension 0 of all outputs.
# The return is (output, out_dims) -- output is a tuple of 3 Tensors
# and out_dims is a Tuple of 3 Optional[int]
return NumpySort.apply(x, dim + 1), (0, 0, 0)
class NumpyTake(torch.autograd.Function):
@staticmethod
def forward(x, ind, ind_inv, dim):
device = x.device
x = to_numpy(x)
ind = to_numpy(ind)
return torch.tensor(np.take_along_axis(x, ind, dim), device=device)
@staticmethod
def setup_context(ctx, inputs, output):
x, ind, ind_inv, dim = inputs
ctx.save_for_backward(ind, ind_inv)
ctx.dim = dim
@staticmethod
def backward(ctx, grad_output):
ind, ind_inv = ctx.saved_tensors
result = NumpyTake.apply(grad_output, ind_inv, ind, ctx.dim)
return result, None, None, None
@staticmethod
def vmap(info, in_dims, x, ind, ind_inv, dim):
x_bdim, ind_bdim, ind_inv_bdim, _ = in_dims
# The strategy is: expand {x, ind, ind_inv} to all have the dimension
# being vmapped over.
# Then, call back into NumpyTake(expanded_x, expanded_ind, expanded_ind_inv, new_dim).
# Handle negative dims by wrapping them to be positive
logical_dim = x.dim() if x_bdim is None else x_bdim - 1
dim = dim if dim >= 0 else dim + logical_dim
def maybe_expand_bdim_at_front(x, x_bdim):
if x_bdim is None:
return x.expand(info.batch_size, *x.shape)
return x.movedim(x_bdim, 0)
# If the Tensor doesn't have the dimension being vmapped over,
# expand it out. Otherwise, move it to the front of the Tensor
x = maybe_expand_bdim_at_front(x, x_bdim)
ind = maybe_expand_bdim_at_front(ind, ind_bdim)
ind_inv = maybe_expand_bdim_at_front(ind_inv, ind_inv_bdim)
# The return is a tuple (output, out_dims). Since output is a Tensor,
# then out_dims is an Optional[int] (instead of being a Tuple).
return NumpyTake.apply(x, ind, ind_inv, dim + 1), 0
def numpy_sort(x, dim=-1):
result, _, _ = NumpySort.apply(x, dim)
return result
x = torch.randn(2, 3)
result = torch.vmap(numpy_sort)(x)
assert torch.allclose(result, numpy_sort(result, 1))
.. note::
The vmap staticmethod should aim to preserve the semantics of the
entire :class:`~torch.autograd.Function`. That is, (pseudocode) ``grad(vmap(MyFunc))``
should be replaceable with a ``grad(map(MyFunc))``.
If your autograd.Function has any custom behavior in the backward pass, please
keep this in mind.
.. note::
It is a legitimate use case to write a custom vmap staticmethod for a
:class:`~torch.autograd.Function` that PyTorch is able to generate a vmap
rule for via ``generate_vmap_rule=True``. You may wish to do this if the
generated vmap rule doesn't have the semantics you're looking for.
:func:`torch.func.jvp` Support
------------------------------
To support forward-mode AD, a :class:`torch.autograd.Function` must have a :meth:`~Function.jvp` staticmethod.
Please see :ref:`forward-ad-autograd-function` for details.
|