1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
Writing Graph Transformations on ATen IR
========================================
Passes
------
Since the ATen IR sits at the FX Graph/GraphModule level, any
transformations written for FX Graphs can be easily applied onto the
ATen IR. If you’re familiar with writing FX graph transformations, then
this will be the same.
The most direct way of writing transformations is by looping through the
given graph and directly manipulating the nodes within the graph.
For example, let’s say we want to replace
``torch.ops.aten.add.Tensor()`` calls with
``torch.ops.aten.mul.Tensor()`` calls:
.. code:: python
import torch
def replace_add_with_mul(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
for node in gm.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
node.target = torch.ops.aten.mul.Tensor
We can also delete and append new nodes through FX utility functions
that can be found in the
`Graph <https://pytorch.org/docs/stable/fx.html#torch.fx.Graph>`__
documentation. For example, if we want to insert a
``torch.ops.aten.relu.default()`` after the ``add`` call:
.. code:: python
import torch
def insert_relu_after_add(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
for node in gm.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
# Specifies the insertion point. Any nodes added to the graph within
# this scope will be inserted after `node`
with gm.graph.inserting_after(node):
# Insert a new `call_function` node with op `torch.ops.aten.relu.default`
new_relu_node = gm.graph.call_function(torch.ops.aten.relu.default, args=(node,))
# Replace all the places that use `node` to now use the `new_relu_node`
node.replace_all_uses_with(new_relu_node)
In general, transformations can be roughly categorized into a couple of
axis:
Axis A: 1. Creating one-to-X mapping (eg. decomposition) 2. Creating
many-to-one mapping (eg. fusion)
Axis B: 1. Doing forwards iteration (eg. shape propagation) 2. Doing
backwards iteration (eg. dead code elimination)
Axis C: 1. Dependent on local node information (eg. out-variant
conversion) 2. Dependent on global graph information (eg. memory
planning)
Our projection on the frequency of these use cases are: 1. A.1, B.1, C.1
2. A.2 3. B.2, C.2
Although we can make all graph transformations through directly
manipulating the graph, we also provide some helper utilities for some
ease of use for the level 1 and 2 use-cases.
Transformer
~~~~~~~~~~~
For level 1 uses cases (creating one-to-X mappings, doing forwards
iterations, and looking at local node information), we can utilize the
`Transformer <https://pytorch.org/docs/stable/fx.html#torch.fx.Transformer>`__
class to execute each node and recreate a graph, except with the
transformations specified.
One-to-One Pass
^^^^^^^^^^^^^^^
An example for one-to-one mappings, if we wanted to replace an op A with
another op B, we can run the GraphModule, and very time we see op A,
return op B.
An example is:
.. code:: python
class ReplaceAddWithMul(torch.fx.Transformer):
def call_function(self, target, args, kwargs):
if target != torch.ops.aten.add.Tensor:
return super().call_function(target, args, kwargs)
return super().call_function(torch.ops.aten.mul.Tensor, args, kwargs)
transformed_graph_module = ReplaceAddWithMul(graph_module).transform()
The ``super().call_function(target, args, kwargs, meta)`` call creates a
``call_function`` FX node, and returns the result of running the
operator with the given arguments.
One-to-X Pass
^^^^^^^^^^^^^
If we wanted to do one-to-X mappings, like replacing op A with 2 other
ops B and C, we would then make 2 calls to ``super().call_function`` to
create 2 FX nodes, one with op B and another with op C, and return the
result of running op C.
For example:
.. code:: python
class ReplaceAddWithMulSub(torch.fx.Transformer):
"""
Original:
def f(x, y):
return x + y
After pass:
def f(x, y):
z = x * y
return z - y
"""
def call_function(self, target, args, kwargs):
if target != torch.ops.aten.add.Tensor:
return super().call_function(target, args, kwargs)
x, y = args
mul_res = super().call_function(torch.ops.aten.mul.Tensor, args, {})
return super().call_function(torch.ops.aten.sub.Tensor, (mul_res, y), {})
transformed_graph_module = ReplaceAddWithMulSub(graph_module).transform()
One-to-None Pass
^^^^^^^^^^^^^^^^
If we wanted to remove an op, we can just return the value passed into
the function:
.. code:: python
class RemoveDetachPass(torch.fx.Transformer):
def call_function(self, target, args, kwargs):
if target not in (
torch.ops.aten.detach.default,
torch.ops.aten.detach_copy.default,
):
return super().call_function(target, args, kwargs, meta)
assert len(args) == 1
return args[0]
transformed_graph_module = RemoveDetachPass(graph_module).transform()
Utilizing Local Information
^^^^^^^^^^^^^^^^^^^^^^^^^^^
An example of utilizing local node information is, if we wanted to
convert all the scalars within the graph to tensors, we can run the
given ``fx.GraphModule``, and for every argument that contains a scalar,
we convert it to a tensor. It might look something like:
.. code:: python
def args_map(target, fn, args, kwargs):
assert isinstance(args, tuple)
assert isinstance(kwargs, dict)
args = list(args)
kwargs = kwargs.copy()
# Update the argument based on the function passed
def update(key, args, schema):
args[key] = fn(args[key], schema)
# Update each argument in the schema
for i, schema in enumerate(target._schema.arguments):
if schema.name in kwargs:
update(schema.name, kwargs, schema)
elif not schema.kwarg_only and i < len(args):
update(i, args, schema)
return tuple(args), kwargs
class ScalarToTensorPass(torch.fx.Transformer):
def call_function(self, target, args, kwargs):
breakpoint()
def try_coerce(value, arg):
return (
torch.tensor(value)
if isinstance(value, (float, int, bool))
and type(arg.type) == torch.TensorType
else value
)
args, kwargs = args_map(target, try_coerce, args, kwargs)
return super().call_function(target, args, kwargs)
transformed_graph_module = ScalarToTensorPass(graph_module).transform()
Subgraph Rewriter
~~~~~~~~~~~~~~~~~
For creating many-to-one mappings, we can utilize FX’s `subgraph
rewriter <https://github.com/pytorch/pytorch/blob/main/torch/fx/subgraph_rewriter.py>`__.
Given a ``pattern``, it creates a subgraph of operators matching to the
pattern, and then replaces each matched subgraph with the
``replacement``.
Note:
::
This is an inplace operation.
The ``pattern`` and ``replacement`` inputs must be callable functions or
GraphModules containing the same operators that are used within the
graph (ATen ops) so that the subgraph rewriter can find the correct
pattern in the graph. Inputs to the pattern/replacement callables will
be treated as wildcards when matching.
An example:
.. code:: python
from torch.fx import subgraph_rewriter
def replace_patterns(graph_module):
def pattern(x, y):
x = torch.ops.aten.add.Tensor(x, y)
x = torch.ops.aten.mul.Tensor(x, y)
return x
def replacement(x, y):
return torch.ops.aten.sub.Tensor(x, y)
replaced_patterns = subgraph_rewriter.replace_pattern_with_filters(
traced_module, pattern, replacement
)
The subgraph rewriter returns a list of ``ReplacedPatterns``:
.. code:: python
@dataclass
class ReplacedPatterns:
# Node from which the match was found
anchor: Node
# Maps nodes in the pattern subgraph to nodes in the larger graph
nodes_map: Dict[Node, Node]
# List of nodes that were added into the graph
replacements: List[Node]
Note:
::
The nodes created by the subgraph rewriter will not have the metadata that
is populated in the matched nodes, but you can use
`ReplacedPatterns.nodes_map` to find the nodes in the original graph that
were matched, and `ReplacedPatterns.replacements` to find the nodes that
were replaced in the transformed graph.
Pass Manager
------------
The
```PassManager`` <https://github.com/pytorch/pytorch/blob/main/torch/fx/passes/infra/pass_manager.py>`__
is a class used to run multiple passes on a given graph module. When
initializing a ``PassManager`` instance, we pass in a list of passes
that we want to run and set a couple of flags. To run the collection of
passes on a graph module, we can pass the graph module directly to the
``PassManager`` instance.
An example:
.. code:: python
from torch.fx.passes.infra.pass_manager import PassManager
pm = PassManager(
passes=[replace_add_with_div, replace_div_with_mul],
run_checks_after_each_pass=True,
suppress_check_failures=False,
)
graph_module_out = pm(graph_module)
To add a common set of checks that are run after each pass, we can call
the function ``set_checks(check: Callable)`` which takes in a callable
function as input. If the ``run_checks_after_each_pass`` flag is set,
the ``check`` will be called after each pass is run on the graph module.
An example:
.. code:: python
pm = PassManager(passes=[replace_add_with_div, replace_div_with_mul])
def check_div_target(graph_module):
for node in graph_module.graph.nodes:
if node.op == "call_function" and node.target != torch.div:
raise ValueError("Target should be div!")
pm.add_checks(check_div_target)
pm(graph_module) # raises ValueError after replace_div_with_mul pass
Partitioner
-----------
There are a couple of common FX graph based partitioners we can use to
partition the graph.
Subgraph Matcher
~~~~~~~~~~~~~~~~
For finding subgraphs within a graph that match a specific pattern, we
can utilize FX’s
```SubgraphMatcher`` <https://github.com/pytorch/pytorch/blob/main/torch/fx/passes/utils/matcher_utils.py>`__.
Class Attributes:
- ``pattern (Graph)``: The targeted matching pattern. Placeholder nodes
in the graph will be treated as wildcards when matching.
- ``match_output (bool)``: If True, output node in the pattern graph
will be treated as a part of the targeted pattern. If False, output
node is ignored during match.
- ``match_placeholder (bool)``: If True, placeholder node in the
pattern graph will be treated as a part of the targeted pattern. If
False, placeholder nodes will be used a wildcard.
- ``remove_overlapping_matches (bool)``: If True, in the case of
overlapping matches, only the first match will be returned.
- ``ignore_literals (bool)``: If True, will not check if literals are
equal and will instead treat them as wildcards.
An example:
.. code:: python
from torch.fx.passes.utils.matcher_utils import SubgraphMatcher
class LargeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self._weight = torch.nn.Parameter(torch.ones(3, 3))
self._bias = torch.nn.Parameter(torch.ones(3, 3))
def forward(self, x):
return torch.ops.aten.addmm.default(self._bias, x, self._weight)
large_model_graph = torch.export(LargeModel(), inputs).graph
class PatternModel(torch.nn.Module):
def __init__(self):
super().__init__()
self._weight_1 = torch.nn.Parameter(torch.ones(5, 5))
self._bias_1 = torch.nn.Parameter(torch.ones(5, 5))
def forward(self, x):
return torch.ops.aten.addmm.default(self._bias_1, x, self._weight_1)
pattern_graph = torch.export(PatternModel(), inputs).graph
subgraph_matcher = SubgraphMatcher(pattern_graph)
match_result = subgraph_matcher.match(large_model_graph)
The ``match`` function returns a list of ``InternalMatch``:
.. code:: python
@dataclass
class InternalMatch():
# Nodes from which the match was found
anchors: List[Node]
# Maps nodes in the pattern subgraph to nodes in the larger graph
nodes_map: Dict[Node, Node] = field(default_factory=dict)
# Nodes in target graph that are matched placeholder in pattern
placeholder_nodes: List[Node] = field(default_factory=list)
# Nodes in matched subgraph returned by output
returning_nodes: List[Node] = field(default_factory=list)
Capability Based Partitioner
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To find the largest subgraphs of nodes that support a specific
invariant, we can utilize FX’s
```CapabilityBasedPartitioner`` <https://github.com/pytorch/pytorch/blob/main/torch/fx/passes/infra/partitioner.py#L34>`__.
Class Attributes
- ``graph_module (torch.fx.GraphModule)``: The graph module we are
partitioning on.
- ``operator_support (OperatorSupportBase)``: The object used to
determine if a node in the graph is supported in the partition.
- ``allows_single_node_partition (bool)``: If True, allows single node
partitions to be formed.
- ``non_compute_ops (Optional[Sequence[str]])``: A set of ops that are
considered to be “non-compute” (ex ``torch.ops.aten.view`` and
``_operator.getitem``, so that the partitioner will not create graphs
that only contain these non-compute ops
- ``allowed_single_node_partition_ops (Optional[Sequence[str]])``: A
set of ops that are allowed to be in a single node partition.
The
```OperatorSupportBase`` <https://github.com/pytorch/pytorch/blob/main/torch/fx/passes/operator_support.py#LL28C1-L28C1>`__
class is used by the partitioner to determine if a specific node in the
graph belongs in the partition. This is done by overriding the
``is_node_supported`` function. You can chain multiple
``OperatorSupportBase`` by using
```chain`` <https://github.com/pytorch/pytorch/blob/main/torch/fx/passes/operator_support.py#L150>`__\ (which
returns False if any of the OperatorSupportBase return False) and
```any_chain`` <https://github.com/pytorch/pytorch/blob/main/torch/fx/passes/operator_support.py#L164>`__
(which returns True if any of the OperatorSupportBase returns True).
An example:
.. code:: python
from torch.fx.passes.infra.partitioner import CapabilityBasedPartitioner
from torch.fx.passes.operator_support import any_chain, OperatorSupportBase
class AddMulOperatorSupport(OperatorSupportBase):
def is_node_supported(self, submodules, node: torch.fx.Node) -> bool:
return node.op == "call_function" and node.target in [
torch.ops.aten.add.Tensor, torch.ops.aten.mul.Tensor,
]
capability_partitioner = CapabilityBasedPartitioner(
graph_module,
op_support,
)
# Returns a list of partitions (list of nodes that belong in each partition)
partition_list = capability_partitioner.propose_partitions()
# Fuses the partitions into graph modules and inserts `call_module` nodes in the graph
fused_graph_module = capability_partitioner.fuse_partitions(partition_list)
|