1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
# Eric Jang originally wrote an implementation of MAML in JAX
# (https://github.com/ericjang/maml-jax).
# We translated his implementation from JAX to PyTorch.
import math
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.nn import functional as F
mpl.use("Agg")
def net(x, params):
x = F.linear(x, params[0], params[1])
x = F.relu(x)
x = F.linear(x, params[2], params[3])
x = F.relu(x)
x = F.linear(x, params[4], params[5])
return x
params = [
torch.Tensor(40, 1).uniform_(-1.0, 1.0).requires_grad_(),
torch.Tensor(40).zero_().requires_grad_(),
torch.Tensor(40, 40)
.uniform_(-1.0 / math.sqrt(40), 1.0 / math.sqrt(40))
.requires_grad_(),
torch.Tensor(40).zero_().requires_grad_(),
torch.Tensor(1, 40)
.uniform_(-1.0 / math.sqrt(40), 1.0 / math.sqrt(40))
.requires_grad_(),
torch.Tensor(1).zero_().requires_grad_(),
]
opt = torch.optim.Adam(params, lr=1e-3)
alpha = 0.1
K = 20
losses = []
num_tasks = 4
def sample_tasks(outer_batch_size, inner_batch_size):
# Select amplitude and phase for the task
As = []
phases = []
for _ in range(outer_batch_size):
As.append(np.random.uniform(low=0.1, high=0.5))
phases.append(np.random.uniform(low=0.0, high=np.pi))
def get_batch():
xs, ys = [], []
for A, phase in zip(As, phases):
x = np.random.uniform(low=-5.0, high=5.0, size=(inner_batch_size, 1))
y = A * np.sin(x + phase)
xs.append(x)
ys.append(y)
return torch.tensor(xs, dtype=torch.float), torch.tensor(ys, dtype=torch.float)
x1, y1 = get_batch()
x2, y2 = get_batch()
return x1, y1, x2, y2
for it in range(20000):
loss2 = 0.0
opt.zero_grad()
def get_loss_for_task(x1, y1, x2, y2):
f = net(x1, params)
loss = F.mse_loss(f, y1)
# create_graph=True because computing grads here is part of the forward pass.
# We want to differentiate through the SGD update steps and get higher order
# derivatives in the backward pass.
grads = torch.autograd.grad(loss, params, create_graph=True)
new_params = [(params[i] - alpha * grads[i]) for i in range(len(params))]
v_f = net(x2, new_params)
return F.mse_loss(v_f, y2)
task = sample_tasks(num_tasks, K)
inner_losses = [
get_loss_for_task(task[0][i], task[1][i], task[2][i], task[3][i])
for i in range(num_tasks)
]
loss2 = sum(inner_losses) / len(inner_losses)
loss2.backward()
opt.step()
if it % 100 == 0:
print("Iteration %d -- Outer Loss: %.4f" % (it, loss2))
losses.append(loss2.detach())
t_A = torch.tensor(0.0).uniform_(0.1, 0.5)
t_b = torch.tensor(0.0).uniform_(0.0, math.pi)
t_x = torch.empty(4, 1).uniform_(-5, 5)
t_y = t_A * torch.sin(t_x + t_b)
opt.zero_grad()
t_params = params
for k in range(5):
t_f = net(t_x, t_params)
t_loss = F.l1_loss(t_f, t_y)
grads = torch.autograd.grad(t_loss, t_params, create_graph=True)
t_params = [(t_params[i] - alpha * grads[i]) for i in range(len(params))]
test_x = torch.arange(-2 * math.pi, 2 * math.pi, step=0.01).unsqueeze(1)
test_y = t_A * torch.sin(test_x + t_b)
test_f = net(test_x, t_params)
plt.plot(test_x.data.numpy(), test_y.data.numpy(), label="sin(x)")
plt.plot(test_x.data.numpy(), test_f.data.numpy(), label="net(x)")
plt.plot(t_x.data.numpy(), t_y.data.numpy(), "o", label="Examples")
plt.legend()
plt.savefig("maml-sine.png")
plt.figure()
plt.plot(np.convolve(losses, [0.05] * 20))
plt.savefig("losses.png")
|