File: gen_data.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (183 lines) | stat: -rw-r--r-- 5,739 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import csv
from collections import defaultdict

import yaml

import torch


def get_ops_for_key(key):
    # Needs modified PyTorch C++ code to work
    if key is None:
        ops = torch._C._dispatch_get_registrations_for_dispatch_key()
    else:
        ops = torch._C._dispatch_get_registrations_for_dispatch_key(key)
    cleaned_ops = []
    for i in ops:
        if "aten::" not in i:
            continue
        cleaned_ops.append(i[6:].strip())
    return set(cleaned_ops)


def gen_data(special_op_lists, analysis_name):
    all_ops = get_ops_for_key(None)
    composite_ops = get_ops_for_key("CompositeImplicitAutograd")
    noncomposite_ops = all_ops - composite_ops

    ops = yaml.load(
        open("../../aten/src/ATen/native/native_functions.yaml").read(),
        Loader=yaml.CLoader,
    )

    annotated_ops = {
        a.strip(): b.strip() for a, b in list(csv.reader(open("annotated_ops")))
    }
    from collections import defaultdict

    uniq_ops = []
    uniq_names = set()
    overload_types = defaultdict(list)
    cnt = 0
    for op in ops:
        func_str = op["func"]
        name = func_str[: func_str.index("(")]
        if "." in name:
            uniq_name = name[: name.index(".")]
            overload_types[name[name.index(".") + 1 :]].append(name)
        else:
            uniq_name = name
        op["name"] = uniq_name
        full_name = func_str[: func_str.index("(")]
        op["full_name"] = full_name
        ret_type = func_str[func_str.index("->") + 3 :]
        op["ret_type"] = ret_type
        cnt += 1
        if uniq_name in uniq_names:
            continue
        uniq_names.add(uniq_name)
        uniq_ops.append(op)

    def annotate_ops(ops, is_unique):
        categorization = defaultdict(int)
        for op in ops:
            if op["name"][-1] == "_":
                categorization["inplace"] += 1
                op["meta"] = "inplace"
                continue
            if not is_unique and "a!" in op["func"].lower():
                categorization["out"] += 1
                op["meta"] = "out"
                continue
            if "conv" in op["name"]:
                categorization["conv"] += 1
                op["meta"] = "conv"
                continue
            if "pool" in op["name"]:
                categorization["pool"] += 1
                op["meta"] = "pool"
                continue
            if "backward" in op["name"]:
                categorization["backward"] += 1
                op["meta"] = "backward"
                continue
            if op["name"][0] == "_" and op["name"][1] != "_":
                categorization["private"] += 1
                op["meta"] = "private"
                continue
            if "batch_norm" in op["name"]:
                categorization["batch_norm"] += 1
                op["meta"] = "batch_norm"
                continue
            if "Tensor" not in op["func"] or "Tensor" not in op["ret_type"]:
                categorization["non_tensor"] += 1
                op["meta"] = "non_tensor"
                continue
            if (
                "cudnn" in op["name"]
                or "mkldnn" in op["name"]
                or "miopen" in op["name"]
                or "native" in op["name"]
                or "thnn" in op["name"]
                or "slow" in op["name"]
            ):
                categorization["backend"] += 1
                op["meta"] = "backend"
                continue
            if op["name"] in annotated_ops:
                categorization["core"] += 1
                op["meta"] = "core " + annotated_ops[op["name"]]
                continue
            categorization["core"] += 1
            op["meta"] = "core unknown"
        return categorization

    annotate_ops(ops, is_unique=False)
    with open(f"{analysis_name}", "w") as f:
        for op in ops:
            info = [
                op["full_name"],
                op["meta"],
                op["full_name"] not in noncomposite_ops,
            ] + [check(op) for check in special_op_lists]
            f.write(",".join([str(i) for i in info]) + "\n")


def name_check(lst):
    return lambda x: x["name"] in lst


def full_name_check(lst):
    return lambda x: x["full_name"] in lst


# Generates batching rule data
gen_data([full_name_check(get_ops_for_key("FuncTorchBatched"))], "vmap.txt")


def remove_suffix(input_string, suffix):
    if suffix and input_string.endswith(suffix):
        return input_string[: -len(suffix)]
    return input_string


def remove_prefix(input_string, prefix):
    if prefix and input_string.startswith(prefix):
        return input_string[len(prefix) :]
    return input_string


if True:
    with open("run_ops.txt") as f:
        opinfo_ops = [remove_suffix(i.strip(), ".default") for i in f]
    with open("count_ops.txt") as f:
        opinfo_counts = [i.strip() for i in f]
        opinfo_counts = defaultdict(int, dict(zip(opinfo_ops, opinfo_counts)))

    def count_fn(x):
        return opinfo_counts[x["full_name"]]

    with open("run_decompositions.txt") as f:
        decomposed_ops = [remove_suffix(i.strip(), ".default") for i in f]

    with open("public_api") as f:
        ref_api = [i.strip() for i in f]

    def has_ref_impl(x):
        name = x["name"]
        for prefix in ["linalg_", "special_"]:
            name = remove_prefix(name, prefix)
        prefixes = ["nn.functional", "fft", "special", "linalg"]
        return (
            any(f"{prefix}.{name}" in ref_api for prefix in prefixes) or name in ref_api
        )

    gen_data(
        [
            full_name_check(opinfo_ops),
            full_name_check(decomposed_ops),
            count_fn,
            has_ref_impl,
        ],
        "decompositions.txt",
    )