File: coreml_backend.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (31 lines) | stat: -rw-r--r-- 937 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from torchvision import models

import torch
from torch.backends._coreml.preprocess import CompileSpec, CoreMLComputeUnit, TensorSpec


def mobilenetv2_spec():
    return {
        "forward": CompileSpec(
            inputs=(TensorSpec(shape=[1, 3, 224, 224]),),
            outputs=(TensorSpec(shape=[1, 1000]),),
            backend=CoreMLComputeUnit.CPU,
            allow_low_precision=True,
        ),
    }


def main():
    model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
    model.eval()
    example = torch.rand(1, 3, 224, 224)
    model = torch.jit.trace(model, example)
    compile_spec = mobilenetv2_spec()
    mlmodel = torch._C._jit_to_backend("coreml", model, compile_spec)
    print(mlmodel._c._get_method("forward").graph)
    mlmodel._save_for_lite_interpreter("../models/model_coreml.ptl")
    torch.jit.save(mlmodel, "../models/model_coreml.pt")


if __name__ == "__main__":
    main()