File: classifier.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (422 lines) | stat: -rw-r--r-- 15,049 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import argparse
import math
import pickle
import random
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
from typing import Dict, List

import common
import pandas as pd
import torchtext
from torchtext.functional import to_tensor
from tqdm import tqdm

import torch
import torch.nn as nn


XLMR_BASE = torchtext.models.XLMR_BASE_ENCODER
# This should not be here but it works for now
device = "cuda" if torch.cuda.is_available() else "cpu"

HAS_IMBLEARN = False
try:
    import imblearn

    HAS_IMBLEARN = True
except ImportError:
    HAS_IMBLEARN = False

# 94% of all files are captured at len 5, good hyperparameter to play around with.
MAX_LEN_FILE = 6

UNKNOWN_TOKEN = "<Unknown>"

# Utilities for working with a truncated file graph


def truncate_file(file: Path, max_len: int = 5):
    return ("/").join(file.parts[:max_len])


def build_file_set(all_files: List[Path], max_len: int):
    truncated_files = [truncate_file(file, max_len) for file in all_files]
    return set(truncated_files)


@dataclass
class CommitClassifierInputs:
    title: List[str]
    files: List[str]
    author: List[str]


@dataclass
class CategoryConfig:
    categories: List[str]
    input_dim: int = 768
    inner_dim: int = 128
    dropout: float = 0.1
    activation = nn.ReLU
    embedding_dim: int = 8
    file_embedding_dim: int = 32


class CommitClassifier(nn.Module):
    def __init__(
        self,
        encoder_base: torchtext.models.XLMR_BASE_ENCODER,
        author_map: Dict[str, int],
        file_map: [str, int],
        config: CategoryConfig,
    ):
        super().__init__()
        self.encoder = encoder_base.get_model().requires_grad_(False)
        self.transform = encoder_base.transform()
        self.author_map = author_map
        self.file_map = file_map
        self.categories = config.categories
        self.num_authors = len(author_map)
        self.num_files = len(file_map)
        self.embedding_table = nn.Embedding(self.num_authors, config.embedding_dim)
        self.file_embedding_bag = nn.EmbeddingBag(
            self.num_files, config.file_embedding_dim, mode="sum"
        )
        self.dense_title = nn.Linear(config.input_dim, config.inner_dim)
        self.dense_files = nn.Linear(config.file_embedding_dim, config.inner_dim)
        self.dense_author = nn.Linear(config.embedding_dim, config.inner_dim)
        self.dropout = nn.Dropout(config.dropout)
        self.out_proj_title = nn.Linear(config.inner_dim, len(self.categories))
        self.out_proj_files = nn.Linear(config.inner_dim, len(self.categories))
        self.out_proj_author = nn.Linear(config.inner_dim, len(self.categories))
        self.activation_fn = config.activation()

    def forward(self, input_batch: CommitClassifierInputs):
        # Encode input title
        title: List[str] = input_batch.title
        model_input = to_tensor(self.transform(title), padding_value=1).to(device)
        title_features = self.encoder(model_input)
        title_embed = title_features[:, 0, :]
        title_embed = self.dropout(title_embed)
        title_embed = self.dense_title(title_embed)
        title_embed = self.activation_fn(title_embed)
        title_embed = self.dropout(title_embed)
        title_embed = self.out_proj_title(title_embed)

        files: list[str] = input_batch.files
        batch_file_indexes = []
        for file in files:
            paths = [
                truncate_file(Path(file_part), MAX_LEN_FILE)
                for file_part in file.split(" ")
            ]
            batch_file_indexes.append(
                [
                    self.file_map.get(file, self.file_map[UNKNOWN_TOKEN])
                    for file in paths
                ]
            )

        flat_indexes = torch.tensor(
            list(chain.from_iterable(batch_file_indexes)),
            dtype=torch.long,
            device=device,
        )
        offsets = [0]
        offsets.extend(len(files) for files in batch_file_indexes[:-1])
        offsets = torch.tensor(offsets, dtype=torch.long, device=device)
        offsets = offsets.cumsum(dim=0)

        files_embed = self.file_embedding_bag(flat_indexes, offsets)
        files_embed = self.dense_files(files_embed)
        files_embed = self.activation_fn(files_embed)
        files_embed = self.dropout(files_embed)
        files_embed = self.out_proj_files(files_embed)

        # Add author embedding
        authors: List[str] = input_batch.author
        author_ids = [
            self.author_map.get(author, self.author_map[UNKNOWN_TOKEN])
            for author in authors
        ]
        author_ids = torch.tensor(author_ids).to(device)
        author_embed = self.embedding_table(author_ids)
        author_embed = self.dense_author(author_embed)
        author_embed = self.activation_fn(author_embed)
        author_embed = self.dropout(author_embed)
        author_embed = self.out_proj_author(author_embed)

        return title_embed + files_embed + author_embed

    def convert_index_to_category_name(self, most_likely_index):
        if isinstance(most_likely_index, int):
            return self.categories[most_likely_index]
        elif isinstance(most_likely_index, torch.Tensor):
            return [self.categories[i] for i in most_likely_index]

    def get_most_likely_category_name(self, inpt):
        # Input will be a dict with title and author keys
        logits = self.forward(inpt)
        most_likely_index = torch.argmax(logits, dim=1)
        return self.convert_index_to_category_name(most_likely_index)


def get_train_val_data(data_folder: Path, regen_data: bool, train_percentage=0.95):
    if (
        not regen_data
        and Path(data_folder / "train_df.csv").exists()
        and Path(data_folder / "val_df.csv").exists()
    ):
        train_data = pd.read_csv(data_folder / "train_df.csv")
        val_data = pd.read_csv(data_folder / "val_df.csv")
        return train_data, val_data
    else:
        print("Train, Val, Test Split not found generating from scratch.")
        commit_list_df = pd.read_csv(data_folder / "commitlist.csv")
        test_df = commit_list_df[commit_list_df["category"] == "Uncategorized"]
        all_train_df = commit_list_df[commit_list_df["category"] != "Uncategorized"]
        # We are going to drop skip from training set since it is so imbalanced
        print(
            "We are removing skip categories, YOU MIGHT WANT TO CHANGE THIS, BUT THIS IS A MORE HELPFUL CLASSIFIER FOR LABELING."
        )
        all_train_df = all_train_df[all_train_df["category"] != "skip"]
        all_train_df = all_train_df.sample(frac=1).reset_index(drop=True)
        split_index = math.floor(train_percentage * len(all_train_df))
        train_df = all_train_df[:split_index]
        val_df = all_train_df[split_index:]
        print("Train data size: ", len(train_df))
        print("Val data size: ", len(val_df))

        test_df.to_csv(data_folder / "test_df.csv", index=False)
        train_df.to_csv(data_folder / "train_df.csv", index=False)
        val_df.to_csv(data_folder / "val_df.csv", index=False)
        return train_df, val_df


def get_author_map(data_folder: Path, regen_data, assert_stored=False):
    if not regen_data and Path(data_folder / "author_map.pkl").exists():
        with open(data_folder / "author_map.pkl", "rb") as f:
            return pickle.load(f)
    else:
        if assert_stored:
            raise FileNotFoundError(
                "Author map not found, you are loading for inference you need to have an author map!"
            )
        print("Regenerating Author Map")
        all_data = pd.read_csv(data_folder / "commitlist.csv")
        authors = all_data.author.unique().tolist()
        authors.append(UNKNOWN_TOKEN)
        author_map = {author: i for i, author in enumerate(authors)}
        with open(data_folder / "author_map.pkl", "wb") as f:
            pickle.dump(author_map, f)
        return author_map


def get_file_map(data_folder: Path, regen_data, assert_stored=False):
    if not regen_data and Path(data_folder / "file_map.pkl").exists():
        with open(data_folder / "file_map.pkl", "rb") as f:
            return pickle.load(f)
    else:
        if assert_stored:
            raise FileNotFoundError(
                "File map not found, you are loading for inference you need to have a file map!"
            )
        print("Regenerating File Map")
        all_data = pd.read_csv(data_folder / "commitlist.csv")
        # Lets explore files
        files = all_data.files_changed.to_list()

        all_files = []
        for file in files:
            paths = [Path(file_part) for file_part in file.split(" ")]
            all_files.extend(paths)
        all_files.append(Path(UNKNOWN_TOKEN))
        file_set = build_file_set(all_files, MAX_LEN_FILE)
        file_map = {file: i for i, file in enumerate(file_set)}
        with open(data_folder / "file_map.pkl", "wb") as f:
            pickle.dump(file_map, f)
        return file_map


#  Generate a dataset for training


def get_title_files_author_categories_zip_list(dataframe: pd.DataFrame):
    title = dataframe.title.to_list()
    files_str = dataframe.files_changed.to_list()
    author = dataframe.author.fillna(UNKNOWN_TOKEN).to_list()
    category = dataframe.category.to_list()
    return list(zip(title, files_str, author, category))


def generate_batch(batch):
    title, files, author, category = zip(*batch)
    title = list(title)
    files = list(files)
    author = list(author)
    category = list(category)
    targets = torch.tensor([common.categories.index(cat) for cat in category]).to(
        device
    )
    return CommitClassifierInputs(title, files, author), targets


def train_step(batch, model, optimizer, loss):
    inpt, targets = batch
    optimizer.zero_grad()
    output = model(inpt)
    l = loss(output, targets)
    l.backward()
    optimizer.step()
    return l


@torch.no_grad()
def eval_step(batch, model, loss):
    inpt, targets = batch
    output = model(inpt)
    l = loss(output, targets)
    return l


def balance_dataset(dataset: List):
    if not HAS_IMBLEARN:
        return dataset
    title, files, author, category = zip(*dataset)
    category = [common.categories.index(cat) for cat in category]
    inpt_data = list(zip(title, files, author))
    from imblearn.over_sampling import RandomOverSampler

    # from imblearn.under_sampling import RandomUnderSampler
    rus = RandomOverSampler(random_state=42)
    X, y = rus.fit_resample(inpt_data, category)
    merged = list(zip(X, y))
    merged = random.sample(merged, k=2 * len(dataset))
    X, y = zip(*merged)
    rebuilt_dataset = []
    for i in range(len(X)):
        rebuilt_dataset.append((*X[i], common.categories[y[i]]))
    return rebuilt_dataset


def gen_class_weights(dataset: List):
    from collections import Counter

    epsilon = 1e-1
    title, files, author, category = zip(*dataset)
    category = [common.categories.index(cat) for cat in category]
    counter = Counter(category)
    percentile_33 = len(category) // 3
    most_common = counter.most_common(percentile_33)
    least_common = counter.most_common()[-percentile_33:]
    smoothed_top = sum(i[1] + epsilon for i in most_common) / len(most_common)
    smoothed_bottom = sum(i[1] + epsilon for i in least_common) / len(least_common) // 3
    class_weights = torch.tensor(
        [
            1.0 / (min(max(counter[i], smoothed_bottom), smoothed_top) + epsilon)
            for i in range(len(common.categories))
        ],
        device=device,
    )
    return class_weights


def train(save_path: Path, data_folder: Path, regen_data: bool, resample: bool):
    train_data, val_data = get_train_val_data(data_folder, regen_data)
    train_zip_list = get_title_files_author_categories_zip_list(train_data)
    val_zip_list = get_title_files_author_categories_zip_list(val_data)

    classifier_config = CategoryConfig(common.categories)
    author_map = get_author_map(data_folder, regen_data)
    file_map = get_file_map(data_folder, regen_data)
    commit_classifier = CommitClassifier(
        XLMR_BASE, author_map, file_map, classifier_config
    ).to(device)

    # Lets train this bag of bits
    class_weights = gen_class_weights(train_zip_list)
    loss = torch.nn.CrossEntropyLoss(weight=class_weights)
    optimizer = torch.optim.Adam(commit_classifier.parameters(), lr=3e-3)

    num_epochs = 25
    batch_size = 256

    if resample:
        # Lets not use this
        train_zip_list = balance_dataset(train_zip_list)
    data_size = len(train_zip_list)

    print(f"Training on {data_size} examples.")
    # We can fit all of val into one batch
    val_batch = generate_batch(val_zip_list)

    for i in tqdm(range(num_epochs), desc="Epochs"):
        start = 0
        random.shuffle(train_zip_list)
        while start < data_size:
            end = start + batch_size
            # make the last batch bigger if needed
            if end > data_size:
                end = data_size
            train_batch = train_zip_list[start:end]
            train_batch = generate_batch(train_batch)
            l = train_step(train_batch, commit_classifier, optimizer, loss)
            start = end

        val_l = eval_step(val_batch, commit_classifier, loss)
        tqdm.write(
            f"Finished epoch {i} with a train loss of: {l.item()} and a val_loss of: {val_l.item()}"
        )

    with torch.no_grad():
        commit_classifier.eval()
        val_inpts, val_targets = val_batch
        val_output = commit_classifier(val_inpts)
        val_preds = torch.argmax(val_output, dim=1)
        val_acc = torch.sum(val_preds == val_targets).item() / len(val_preds)
        print(f"Final Validation accuracy is {val_acc}")

    print(f"Jobs done! Saving to {save_path}")
    torch.save(commit_classifier.state_dict(), save_path)


def main():
    parser = argparse.ArgumentParser(
        description="Tool to create a classifier for helping to categorize commits"
    )

    parser.add_argument("--train", action="store_true", help="Train a new classifier")
    parser.add_argument("--commit_data_folder", default="results/classifier/")
    parser.add_argument(
        "--save_path", default="results/classifier/commit_classifier.pt"
    )
    parser.add_argument(
        "--regen_data",
        action="store_true",
        help="Regenerate the training data, helps if labeled more examples and want to re-train.",
    )
    parser.add_argument(
        "--resample",
        action="store_true",
        help="Resample the training data to be balanced. (Only works if imblearn is installed.)",
    )
    args = parser.parse_args()

    if args.train:
        train(
            Path(args.save_path),
            Path(args.commit_data_folder),
            args.regen_data,
            args.resample,
        )
        return

    print(
        "Currently this file only trains a new classifier please pass in --train to train a new classifier"
    )


if __name__ == "__main__":
    main()