1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
import argparse
import math
import pickle
import random
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
from typing import Dict, List
import common
import pandas as pd
import torchtext
from torchtext.functional import to_tensor
from tqdm import tqdm
import torch
import torch.nn as nn
XLMR_BASE = torchtext.models.XLMR_BASE_ENCODER
# This should not be here but it works for now
device = "cuda" if torch.cuda.is_available() else "cpu"
HAS_IMBLEARN = False
try:
import imblearn
HAS_IMBLEARN = True
except ImportError:
HAS_IMBLEARN = False
# 94% of all files are captured at len 5, good hyperparameter to play around with.
MAX_LEN_FILE = 6
UNKNOWN_TOKEN = "<Unknown>"
# Utilities for working with a truncated file graph
def truncate_file(file: Path, max_len: int = 5):
return ("/").join(file.parts[:max_len])
def build_file_set(all_files: List[Path], max_len: int):
truncated_files = [truncate_file(file, max_len) for file in all_files]
return set(truncated_files)
@dataclass
class CommitClassifierInputs:
title: List[str]
files: List[str]
author: List[str]
@dataclass
class CategoryConfig:
categories: List[str]
input_dim: int = 768
inner_dim: int = 128
dropout: float = 0.1
activation = nn.ReLU
embedding_dim: int = 8
file_embedding_dim: int = 32
class CommitClassifier(nn.Module):
def __init__(
self,
encoder_base: torchtext.models.XLMR_BASE_ENCODER,
author_map: Dict[str, int],
file_map: [str, int],
config: CategoryConfig,
):
super().__init__()
self.encoder = encoder_base.get_model().requires_grad_(False)
self.transform = encoder_base.transform()
self.author_map = author_map
self.file_map = file_map
self.categories = config.categories
self.num_authors = len(author_map)
self.num_files = len(file_map)
self.embedding_table = nn.Embedding(self.num_authors, config.embedding_dim)
self.file_embedding_bag = nn.EmbeddingBag(
self.num_files, config.file_embedding_dim, mode="sum"
)
self.dense_title = nn.Linear(config.input_dim, config.inner_dim)
self.dense_files = nn.Linear(config.file_embedding_dim, config.inner_dim)
self.dense_author = nn.Linear(config.embedding_dim, config.inner_dim)
self.dropout = nn.Dropout(config.dropout)
self.out_proj_title = nn.Linear(config.inner_dim, len(self.categories))
self.out_proj_files = nn.Linear(config.inner_dim, len(self.categories))
self.out_proj_author = nn.Linear(config.inner_dim, len(self.categories))
self.activation_fn = config.activation()
def forward(self, input_batch: CommitClassifierInputs):
# Encode input title
title: List[str] = input_batch.title
model_input = to_tensor(self.transform(title), padding_value=1).to(device)
title_features = self.encoder(model_input)
title_embed = title_features[:, 0, :]
title_embed = self.dropout(title_embed)
title_embed = self.dense_title(title_embed)
title_embed = self.activation_fn(title_embed)
title_embed = self.dropout(title_embed)
title_embed = self.out_proj_title(title_embed)
files: list[str] = input_batch.files
batch_file_indexes = []
for file in files:
paths = [
truncate_file(Path(file_part), MAX_LEN_FILE)
for file_part in file.split(" ")
]
batch_file_indexes.append(
[
self.file_map.get(file, self.file_map[UNKNOWN_TOKEN])
for file in paths
]
)
flat_indexes = torch.tensor(
list(chain.from_iterable(batch_file_indexes)),
dtype=torch.long,
device=device,
)
offsets = [0]
offsets.extend(len(files) for files in batch_file_indexes[:-1])
offsets = torch.tensor(offsets, dtype=torch.long, device=device)
offsets = offsets.cumsum(dim=0)
files_embed = self.file_embedding_bag(flat_indexes, offsets)
files_embed = self.dense_files(files_embed)
files_embed = self.activation_fn(files_embed)
files_embed = self.dropout(files_embed)
files_embed = self.out_proj_files(files_embed)
# Add author embedding
authors: List[str] = input_batch.author
author_ids = [
self.author_map.get(author, self.author_map[UNKNOWN_TOKEN])
for author in authors
]
author_ids = torch.tensor(author_ids).to(device)
author_embed = self.embedding_table(author_ids)
author_embed = self.dense_author(author_embed)
author_embed = self.activation_fn(author_embed)
author_embed = self.dropout(author_embed)
author_embed = self.out_proj_author(author_embed)
return title_embed + files_embed + author_embed
def convert_index_to_category_name(self, most_likely_index):
if isinstance(most_likely_index, int):
return self.categories[most_likely_index]
elif isinstance(most_likely_index, torch.Tensor):
return [self.categories[i] for i in most_likely_index]
def get_most_likely_category_name(self, inpt):
# Input will be a dict with title and author keys
logits = self.forward(inpt)
most_likely_index = torch.argmax(logits, dim=1)
return self.convert_index_to_category_name(most_likely_index)
def get_train_val_data(data_folder: Path, regen_data: bool, train_percentage=0.95):
if (
not regen_data
and Path(data_folder / "train_df.csv").exists()
and Path(data_folder / "val_df.csv").exists()
):
train_data = pd.read_csv(data_folder / "train_df.csv")
val_data = pd.read_csv(data_folder / "val_df.csv")
return train_data, val_data
else:
print("Train, Val, Test Split not found generating from scratch.")
commit_list_df = pd.read_csv(data_folder / "commitlist.csv")
test_df = commit_list_df[commit_list_df["category"] == "Uncategorized"]
all_train_df = commit_list_df[commit_list_df["category"] != "Uncategorized"]
# We are going to drop skip from training set since it is so imbalanced
print(
"We are removing skip categories, YOU MIGHT WANT TO CHANGE THIS, BUT THIS IS A MORE HELPFUL CLASSIFIER FOR LABELING."
)
all_train_df = all_train_df[all_train_df["category"] != "skip"]
all_train_df = all_train_df.sample(frac=1).reset_index(drop=True)
split_index = math.floor(train_percentage * len(all_train_df))
train_df = all_train_df[:split_index]
val_df = all_train_df[split_index:]
print("Train data size: ", len(train_df))
print("Val data size: ", len(val_df))
test_df.to_csv(data_folder / "test_df.csv", index=False)
train_df.to_csv(data_folder / "train_df.csv", index=False)
val_df.to_csv(data_folder / "val_df.csv", index=False)
return train_df, val_df
def get_author_map(data_folder: Path, regen_data, assert_stored=False):
if not regen_data and Path(data_folder / "author_map.pkl").exists():
with open(data_folder / "author_map.pkl", "rb") as f:
return pickle.load(f)
else:
if assert_stored:
raise FileNotFoundError(
"Author map not found, you are loading for inference you need to have an author map!"
)
print("Regenerating Author Map")
all_data = pd.read_csv(data_folder / "commitlist.csv")
authors = all_data.author.unique().tolist()
authors.append(UNKNOWN_TOKEN)
author_map = {author: i for i, author in enumerate(authors)}
with open(data_folder / "author_map.pkl", "wb") as f:
pickle.dump(author_map, f)
return author_map
def get_file_map(data_folder: Path, regen_data, assert_stored=False):
if not regen_data and Path(data_folder / "file_map.pkl").exists():
with open(data_folder / "file_map.pkl", "rb") as f:
return pickle.load(f)
else:
if assert_stored:
raise FileNotFoundError(
"File map not found, you are loading for inference you need to have a file map!"
)
print("Regenerating File Map")
all_data = pd.read_csv(data_folder / "commitlist.csv")
# Lets explore files
files = all_data.files_changed.to_list()
all_files = []
for file in files:
paths = [Path(file_part) for file_part in file.split(" ")]
all_files.extend(paths)
all_files.append(Path(UNKNOWN_TOKEN))
file_set = build_file_set(all_files, MAX_LEN_FILE)
file_map = {file: i for i, file in enumerate(file_set)}
with open(data_folder / "file_map.pkl", "wb") as f:
pickle.dump(file_map, f)
return file_map
# Generate a dataset for training
def get_title_files_author_categories_zip_list(dataframe: pd.DataFrame):
title = dataframe.title.to_list()
files_str = dataframe.files_changed.to_list()
author = dataframe.author.fillna(UNKNOWN_TOKEN).to_list()
category = dataframe.category.to_list()
return list(zip(title, files_str, author, category))
def generate_batch(batch):
title, files, author, category = zip(*batch)
title = list(title)
files = list(files)
author = list(author)
category = list(category)
targets = torch.tensor([common.categories.index(cat) for cat in category]).to(
device
)
return CommitClassifierInputs(title, files, author), targets
def train_step(batch, model, optimizer, loss):
inpt, targets = batch
optimizer.zero_grad()
output = model(inpt)
l = loss(output, targets)
l.backward()
optimizer.step()
return l
@torch.no_grad()
def eval_step(batch, model, loss):
inpt, targets = batch
output = model(inpt)
l = loss(output, targets)
return l
def balance_dataset(dataset: List):
if not HAS_IMBLEARN:
return dataset
title, files, author, category = zip(*dataset)
category = [common.categories.index(cat) for cat in category]
inpt_data = list(zip(title, files, author))
from imblearn.over_sampling import RandomOverSampler
# from imblearn.under_sampling import RandomUnderSampler
rus = RandomOverSampler(random_state=42)
X, y = rus.fit_resample(inpt_data, category)
merged = list(zip(X, y))
merged = random.sample(merged, k=2 * len(dataset))
X, y = zip(*merged)
rebuilt_dataset = []
for i in range(len(X)):
rebuilt_dataset.append((*X[i], common.categories[y[i]]))
return rebuilt_dataset
def gen_class_weights(dataset: List):
from collections import Counter
epsilon = 1e-1
title, files, author, category = zip(*dataset)
category = [common.categories.index(cat) for cat in category]
counter = Counter(category)
percentile_33 = len(category) // 3
most_common = counter.most_common(percentile_33)
least_common = counter.most_common()[-percentile_33:]
smoothed_top = sum(i[1] + epsilon for i in most_common) / len(most_common)
smoothed_bottom = sum(i[1] + epsilon for i in least_common) / len(least_common) // 3
class_weights = torch.tensor(
[
1.0 / (min(max(counter[i], smoothed_bottom), smoothed_top) + epsilon)
for i in range(len(common.categories))
],
device=device,
)
return class_weights
def train(save_path: Path, data_folder: Path, regen_data: bool, resample: bool):
train_data, val_data = get_train_val_data(data_folder, regen_data)
train_zip_list = get_title_files_author_categories_zip_list(train_data)
val_zip_list = get_title_files_author_categories_zip_list(val_data)
classifier_config = CategoryConfig(common.categories)
author_map = get_author_map(data_folder, regen_data)
file_map = get_file_map(data_folder, regen_data)
commit_classifier = CommitClassifier(
XLMR_BASE, author_map, file_map, classifier_config
).to(device)
# Lets train this bag of bits
class_weights = gen_class_weights(train_zip_list)
loss = torch.nn.CrossEntropyLoss(weight=class_weights)
optimizer = torch.optim.Adam(commit_classifier.parameters(), lr=3e-3)
num_epochs = 25
batch_size = 256
if resample:
# Lets not use this
train_zip_list = balance_dataset(train_zip_list)
data_size = len(train_zip_list)
print(f"Training on {data_size} examples.")
# We can fit all of val into one batch
val_batch = generate_batch(val_zip_list)
for i in tqdm(range(num_epochs), desc="Epochs"):
start = 0
random.shuffle(train_zip_list)
while start < data_size:
end = start + batch_size
# make the last batch bigger if needed
if end > data_size:
end = data_size
train_batch = train_zip_list[start:end]
train_batch = generate_batch(train_batch)
l = train_step(train_batch, commit_classifier, optimizer, loss)
start = end
val_l = eval_step(val_batch, commit_classifier, loss)
tqdm.write(
f"Finished epoch {i} with a train loss of: {l.item()} and a val_loss of: {val_l.item()}"
)
with torch.no_grad():
commit_classifier.eval()
val_inpts, val_targets = val_batch
val_output = commit_classifier(val_inpts)
val_preds = torch.argmax(val_output, dim=1)
val_acc = torch.sum(val_preds == val_targets).item() / len(val_preds)
print(f"Final Validation accuracy is {val_acc}")
print(f"Jobs done! Saving to {save_path}")
torch.save(commit_classifier.state_dict(), save_path)
def main():
parser = argparse.ArgumentParser(
description="Tool to create a classifier for helping to categorize commits"
)
parser.add_argument("--train", action="store_true", help="Train a new classifier")
parser.add_argument("--commit_data_folder", default="results/classifier/")
parser.add_argument(
"--save_path", default="results/classifier/commit_classifier.pt"
)
parser.add_argument(
"--regen_data",
action="store_true",
help="Regenerate the training data, helps if labeled more examples and want to re-train.",
)
parser.add_argument(
"--resample",
action="store_true",
help="Resample the training data to be balanced. (Only works if imblearn is installed.)",
)
args = parser.parse_args()
if args.train:
train(
Path(args.save_path),
Path(args.commit_data_folder),
args.regen_data,
args.resample,
)
return
print(
"Currently this file only trains a new classifier please pass in --train to train a new classifier"
)
if __name__ == "__main__":
main()
|