File: test.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (335 lines) | stat: -rw-r--r-- 12,996 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#include <gtest/gtest.h>
#include <filesystem>
#include <string>
#include <vector>

#include <torch/csrc/inductor/aoti_runner/model_container_runner_cpu.h>
#if defined(USE_CUDA) || defined(USE_ROCM)
#include <torch/csrc/inductor/aoti_runner/model_container_runner_cuda.h>
#endif
#include <torch/script.h>
#include <torch/torch.h>

#define STR_VALUE(x) #x
#define STRINGIZE(x) STR_VALUE(x)

namespace {

void test_aoti(const std::string& device, bool use_runtime_constant_folding) {
  torch::NoGradGuard no_grad;

  std::string data_path =
      (std::filesystem::path(STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "data.pt")
           .string();
  torch::jit::script::Module data_loader = torch::jit::load(data_path);
  std::string suffix = use_runtime_constant_folding
      ? device + "_use_runtime_constant_folding"
      : device;
  std::string path_attr = "model_so_path_" + suffix;
  std::string inputs_attr = "inputs_" + suffix;
  std::string outputs_attr = "outputs_" + suffix;
  const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef();
  const auto& ref_output_tensors =
      data_loader.attr(outputs_attr.c_str()).toTensorList().vec();

  std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner;
  if (device == "cpu") {
    runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCpu>(
        model_so_path);
#if defined(USE_CUDA) || defined(USE_ROCM)
  } else if (device == "cuda") {
    runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>(
        model_so_path);
#endif
  } else {
    testing::AssertionFailure() << "unsupported device: " << device;
  }
  auto actual_output_tensors =
      runner->run(data_loader.attr(inputs_attr.c_str()).toTensorList().vec());
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}

void test_aoti_script(const std::string& device) {
  torch::NoGradGuard no_grad;

  std::string script_model = "script_model_" + device + ".pt";
  std::string model_path =
      (std::filesystem::path(
           STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / script_model.c_str())
           .string();
  torch::jit::script::Module model = torch::jit::load(model_path);

  std::string sample_data_path =
      (std::filesystem::path(
           STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "script_data.pt")
           .string();
  torch::jit::script::Module sample_data = torch::jit::load(sample_data_path);
  std::string inputs_attr = "inputs_" + device;
  std::string outputs_attr = "outputs_" + device;
  const auto& inputs = sample_data.attr(inputs_attr.c_str()).toList().vec();
  const auto& ref_output_tensors =
      sample_data.attr(outputs_attr.c_str()).toTensorVector();
  auto outputs = model.forward(inputs).toTuple()->elements();
  ASSERT_EQ(outputs.size(), ref_output_tensors.size());
  for (size_t i = 0; i < ref_output_tensors.size(); i++) {
    ASSERT_TRUE(torch::allclose(outputs[i].toTensor(), ref_output_tensors[i]));
  }
}

void test_aoti_constants_update(
    const std::string& device,
    bool use_runtime_constant_folding) {
  torch::NoGradGuard no_grad;

  std::string data_path =
      (std::filesystem::path(STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "data.pt")
           .string();

  torch::jit::script::Module data_loader = torch::jit::load(data_path);
  std::string suffix = use_runtime_constant_folding
      ? device + "_use_runtime_constant_folding"
      : device;
  std::string path_attr = "model_so_path_" + suffix;
  std::string inputs_attr = "inputs_" + suffix;
  std::string outputs_attr = "outputs_" + suffix;
  std::string weights_attr = "w_pre_" + suffix;
  std::string add_attr = "w_add_" + suffix;
  const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef();
  auto input_tensors =
      data_loader.attr(inputs_attr.c_str()).toTensorList().vec();
  const auto& ref_output_tensors =
      data_loader.attr(outputs_attr.c_str()).toTensorList().vec();

  const auto& weight_tensors =
      data_loader.attr(weights_attr.c_str()).toTensor();
  const auto& add_tensors = data_loader.attr(add_attr.c_str()).toTensor();

  torch::inductor::TensorConstantMap missing_map, rand_map, real_map;
  missing_map.emplace("L__self___w_pre", new at::Tensor(at::randn({4, 4})));
  rand_map.emplace("L__self___w_pre", new at::Tensor(at::randn({10})));
  rand_map.emplace("L__self___w_add", new at::Tensor(at::randn({10})));
  real_map.emplace("L__self___w_pre", new at::Tensor(weight_tensors));
  real_map.emplace("L__self___w_add", new at::Tensor(add_tensors));

  std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner;
  if (device == "cpu") {
    runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCpu>(
        model_so_path);
#if defined(USE_CUDA) || defined(USE_ROCM)
  } else if (device == "cuda") {
    runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>(
        model_so_path);
#endif
  } else {
    testing::AssertionFailure() << "unsupported device: " << device;
  }
  // By default, buffer #1 get loaded with burned in weights. Correct results.
  auto actual_output_tensors = runner->run(input_tensors);
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));

  // Update with missing map which should throw.
  EXPECT_THROW(
      runner->update_constant_buffer(missing_map, false, true),
      std::runtime_error);

  // Update random weight to buffer #1.
  runner->update_constant_buffer(missing_map, false, false);
  actual_output_tensors = runner->run(input_tensors);
  if (use_runtime_constant_folding) {
    // At this moment, this update is applied on the original weight.
    // The weight being consumed is "folded", so will have no affect.
    ASSERT_TRUE(
        torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
    runner->run_const_fold(/* use_inactive = */ false);
    actual_output_tensors = runner->run(input_tensors);
  }
  ASSERT_FALSE(
      torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));

  // Update with real map.
  runner->update_constant_buffer(real_map, false, false);
  actual_output_tensors = runner->run(input_tensors);
  if (use_runtime_constant_folding) {
    runner->run_const_fold(/* use_inactive = */ false);
  }
  actual_output_tensors = runner->run(input_tensors);
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));

  // Update with full random map.
  runner->update_constant_buffer(rand_map, false, false);
  if (use_runtime_constant_folding) {
    runner->run_const_fold(/* use_inactive = */ false);
  }
  actual_output_tensors = runner->run(input_tensors);
  ASSERT_FALSE(
      torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}

void test_aoti_double_buffering(
    const std::string& device,
    bool use_runtime_constant_folding) {
  torch::NoGradGuard no_grad;

  std::string data_path =
      (std::filesystem::path(STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "data.pt")
           .string();

  torch::jit::script::Module data_loader = torch::jit::load(data_path);
  std::string suffix = use_runtime_constant_folding
      ? device + "_use_runtime_constant_folding"
      : device;
  std::string path_attr = "model_so_path_" + suffix;
  std::string inputs_attr = "inputs_" + suffix;
  std::string outputs_attr = "outputs_" + suffix;
  std::string weights_attr = "w_pre_" + suffix;
  std::string add_attr = "w_add_" + suffix;
  const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef();
  auto input_tensors =
      data_loader.attr(inputs_attr.c_str()).toTensorList().vec();
  const auto& ref_output_tensors =
      data_loader.attr(outputs_attr.c_str()).toTensorList().vec();

  const auto& weight_tensors =
      data_loader.attr(weights_attr.c_str()).toTensor();
  const auto& add_tensors = data_loader.attr(add_attr.c_str()).toTensor();

  torch::inductor::TensorConstantMap rand_map, real_map;
  rand_map.emplace("L__self___w_pre", new at::Tensor(at::randn({4, 4})));
  rand_map.emplace("L__self___w_add", new at::Tensor(at::randn({4, 4})));
  real_map.emplace("L__self___w_pre", new at::Tensor(weight_tensors));
  real_map.emplace("L__self___w_add", new at::Tensor(add_tensors));

  std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner;
  if (device == "cpu") {
    runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCpu>(
        model_so_path);
#if defined(USE_CUDA) || defined(USE_ROCM)
  } else if (device == "cuda") {
    runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>(
        model_so_path);
#endif
  } else {
    testing::AssertionFailure() << "unsupported device: " << device;
  }
  // By default, buffer #1 get loaded with burned in weights. Correct results.
  auto actual_output_tensors = runner->run(input_tensors);
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));

  // We update the weights to buffer #2 and activate it. This should still
  // produce correct result, as it's the real constant map.
  runner->update_inactive_constant_buffer(real_map);
  if (use_runtime_constant_folding) {
    runner->run_const_fold(/* use_inactive = */ true);
  }
  runner->swap_constant_buffer();
  actual_output_tensors = runner->run(input_tensors);
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));

  // We update random weights to buffer #1. But do not swap in the weight yet.
  runner->update_inactive_constant_buffer(rand_map);
  if (use_runtime_constant_folding) {
    runner->run_const_fold(/* use_inactive = */ true);
  }
  actual_output_tensors = runner->run(input_tensors);
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));

  // We swap and activate the weight to buffer #1. This is random weight and
  // should produce incorrect results.
  runner->swap_constant_buffer();
  actual_output_tensors = runner->run(input_tensors);
  ASSERT_FALSE(
      torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));

  // Swap back to buffer #2 which is the real constants.
  runner->swap_constant_buffer();
  actual_output_tensors = runner->run(input_tensors);
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}

#if defined(USE_CUDA) || defined(USE_ROCM)
void test_aoti_double_buffering_with_tensor_constants() {
  torch::NoGradGuard no_grad;

  std::string data_path = (std::filesystem::path(
                               STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) /
                               "data_with_tensor_constants.pt")
                               .string();

  torch::jit::script::Module data_loader = torch::jit::load(data_path);
  std::string path_attr = "model_so_path";
  std::string inputs_attr = "inputs";
  std::string w_attr = "w";
  std::string outputs_attr = "outputs";
  const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef();
  auto input_tensors =
      data_loader.attr(inputs_attr.c_str()).toTensorList().vec();
  const auto& w_tensors = data_loader.attr(w_attr.c_str()).toTensor();
  const auto& ref_output_tensors =
      data_loader.attr(outputs_attr.c_str()).toTensorList().vec();

  torch::inductor::TensorConstantMap real_map;
  real_map.emplace("L__self___w", new at::Tensor(w_tensors));

  std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner;
  runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>(
      model_so_path.c_str());

  // By default, buffer #1 get loaded with burned in weights. Correct results.
  auto actual_output_tensors = runner->run(input_tensors);
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));

  // We update the weights to buffer #2 and activate it. This should still
  // produce correct result, since we would have copied the tensor_constants.
  runner->update_inactive_constant_buffer(real_map);
  runner->swap_constant_buffer();
  actual_output_tensors = runner->run(input_tensors);
  ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}
#endif

} // namespace

namespace torch {
namespace aot_inductor {

TEST(AotInductorTest, BasicTestCpu) {
  test_aoti("cpu", false);
}

TEST(AotInductorTest, BasicScriptTestCpu) {
  test_aoti_script("cpu");
}

#ifdef USE_CUDA
TEST(AotInductorTest, BasicTestCuda) {
  test_aoti("cuda", true);
  test_aoti("cuda", false);
}

TEST(AotInductorTest, BasicScriptTestCuda) {
  test_aoti_script("cuda");
}

TEST(AotInductorTest, RuntimeUpdateConstantsCuda) {
  test_aoti_constants_update("cuda", true);
}

TEST(AotInductorTest, UpdateConstantsCuda) {
  test_aoti_constants_update("cuda", false);
}

TEST(AotInductorTest, RuntimeUpdateInactiveConstantsCuda) {
  test_aoti_double_buffering("cuda", true);
}

TEST(AotInductorTest, UpdateInactiveConstantsCuda) {
  test_aoti_double_buffering("cuda", false);
}

TEST(AotInductorTest, UpdateInactiveConstantsWithTensorConstantsCuda) {
  test_aoti_double_buffering_with_tensor_constants();
}
#endif

} // namespace aot_inductor
} // namespace torch