File: ProcessGroupNCCLTest.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (879 lines) | stat: -rw-r--r-- 27,676 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
#include <chrono>
#include <iostream>

#include <torch/csrc/distributed/c10d/FileStore.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#include "CUDATest.hpp"
#include "TestUtils.hpp"
#include "c10d/Types.hpp"

#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <c10/util/irange.h>

#include <gtest/gtest.h>
#include <torch/csrc/autograd/profiler.h>

using namespace c10d::test;

using at::cuda::CUDAStream;

class NCCLTestBase {
 public:
  NCCLTestBase(
      std::string path,
      const std::chrono::milliseconds pgTimeout =
          c10d::kProcessGroupNCCLDefaultTimeout)
      : path_(std::move(path)), pgTimeout_(pgTimeout) {}

  NCCLTestBase(NCCLTestBase&& other) noexcept = default;

  std::shared_ptr<::c10d::ProcessGroupNCCL> getProcessGroup() {
    return pg_;
  }

  ::c10::intrusive_ptr<::c10d::Store>& getProcessGroupStore() {
    return store_;
  }

  void initialize(
      int rank,
      size_t size,
      std::optional<::std::shared_ptr<::c10d::ProcessGroupNCCL>> split_from =
          std::nullopt) {
    store_ = c10::make_intrusive<::c10d::FileStore>(path_, size);

    c10::intrusive_ptr<c10d::ProcessGroupNCCL::Options> opts =
        c10::make_intrusive<c10d::ProcessGroupNCCL::Options>();
    opts->timeout = pgTimeout_;
#ifdef NCCL_HAS_COMM_SPLIT
    if (split_from) {
      opts->split_from = *split_from;
      opts->split_color = ++color_;
    }
#endif
    pg_ = std::make_unique<::c10d::ProcessGroupNCCL>(
        store_, rank, size, std::move(opts));
  }

 protected:
  std::string path_;
  std::shared_ptr<::c10d::ProcessGroupNCCL> pg_;
  std::chrono::milliseconds pgTimeout_;
  ::c10::intrusive_ptr<::c10d::Store> store_;
  int color_{1};
};

class NCCLTest : public NCCLTestBase {
 public:
  NCCLTest(
      const std::string& path,
      int rank,
      int worldSize,
      std::chrono::milliseconds pgTimeout =
          c10d::kProcessGroupNCCLDefaultTimeout,
      int inputDim = 3)
      : NCCLTestBase(path, pgTimeout), rank_(rank), worldSize_(worldSize) {
    // Each device has a single tensor to perf the NCCL op
    ::at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
    tensors_.resize(numDevices_);
    inputs_.resize(numDevices_);
    outputs_.resize(numDevices_);
    at::cuda::OptionalCUDAGuard deviceGuard;
    assert(numDevices_ == 1);
    for (const auto i : c10::irange(numDevices_)) {
      deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
      tensors_[i] = at::empty({inputDim, inputDim}, at::kCUDA);
      inputs_[i].resize(static_cast<size_t>(worldSize_) * numDevices_);
      outputs_[i].resize(static_cast<size_t>(worldSize_) * numDevices_);
      for (auto j = 0; j < worldSize_ * numDevices_; ++j) {
        inputs_[i][j] = at::empty({inputDim, inputDim}, at::kCUDA);
        outputs_[i][j] = at::empty({inputDim, inputDim}, at::kCUDA);
      }
    }

    // Allocate a stream per device.
    //
    // The "current stream" is set globally per device in THC, so we
    // can't make two tensors on the same device use different streams
    // and pass this along to the collective (since it uses the THC
    // getters to retrieve the current stream).
    //
    // 1 device only, hence 1 stream only
    deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
    streams_.push_back(at::cuda::getStreamFromPool());
  }

  void wait(
      c10::intrusive_ptr<c10d::Work>& work,
      std::chrono::milliseconds timeout = kNoTimeout) {
    c10::cuda::CUDAMultiStreamGuard guard(streams_);
    work->wait(timeout);
  }

  std::vector<at::Tensor> getTensors() {
    std::vector<at::Tensor> outputs(numDevices_);

    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);

    // Copy inputs to outputs
    for (const auto i : c10::irange(numDevices_)) {
      C10_CUDA_CHECK(cudaStreamSynchronize(streams_[i].stream()));
      outputs[i] = tensors_[i].cpu();
    }

    return outputs;
  }

  std::vector<std::vector<at::Tensor>> getInputTensors() {
    return getTensorLists(inputs_);
  }
  std::vector<std::vector<at::Tensor>> getOutputTensors() {
    return getTensorLists(outputs_);
  }

  int numDevices() const {
    return numDevices_;
  }

 private:
  std::vector<std::vector<at::Tensor>> getTensorLists(
      std::vector<std::vector<at::Tensor>>& tensor_lists) {
    std::vector<std::vector<at::Tensor>> outputs(numDevices_);
    for (auto& output : outputs) {
      output = std::vector<at::Tensor>(
          static_cast<size_t>(worldSize_ * numDevices_));
    }

    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);

    // Copy inputs to outputs
    for (const auto i : c10::irange(numDevices_)) {
      C10_CUDA_CHECK(cudaStreamSynchronize(streams_[i].stream()));
      for (auto j = 0; j < worldSize_ * numDevices_; ++j) {
        outputs[i][j] = tensor_lists[i][j].cpu();
      }
    }
    return outputs;
  }

 protected:
  // Launches sleep on every CUDA device
  void launchDeviceSleep() {
    at::cuda::OptionalCUDAGuard deviceGuard;
    for (const auto i : c10::irange(numDevices_)) {
      deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
      cudaSleep(streams_[i], 2000ull * 1000 * 1000);
    }
  }

  // Launches value initialization for every tensor
  void valueInitialization() {
    at::cuda::OptionalCUDAGuard deviceGuard;
    for (const auto i : c10::irange(numDevices_)) {
      deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
      tensors_[i].fill_(pg_->getRank() * numDevices_ + i);
    }
  }

  at::Tensor to_sparse_row_indices_format(at::Tensor& tensor) {
    // Get the indices of all non-zero elements in the dense tensor
    // Get the unique row indices of the non-zero elements
    auto row_indices = std::get<0>(
        at::_unique(tensor.nonzero().select(/*dim=*/1, /*index=*/0)));
    at::Tensor sparse_values = tensor.index_select(
        /*dim=*/0, row_indices); // get the values at the non-zero indices
    return at::sparse_coo_tensor(
               row_indices.unsqueeze(0), sparse_values, tensor.sizes())
        .to(tensor.device());
  }

  // Launches value initialization for every sparse tensor
  void valueInitializationForSparse() {
    at::cuda::OptionalCUDAGuard deviceGuard;
    for (const auto i : c10::irange(numDevices_)) {
      deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
      tensors_[i].fill_(pg_->getRank() * numDevices_ + i + 1);
      // Convert the dense tensor to a sparse tensor in COO row format
      tensors_[i] = to_sparse_row_indices_format(tensors_[i]);
    }
  }

  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  const int numDevices_{1}; // one device per rank (thread)
  int rank_;
  int worldSize_;
  std::vector<at::Tensor> tensors_;
  std::vector<std::vector<at::Tensor>> inputs_;
  std::vector<std::vector<at::Tensor>> outputs_;
  std::vector<CUDAStream> streams_;
};

class AllreduceNCCLTest : public NCCLTest {
 public:
  AllreduceNCCLTest(const std::string& path, int rank, int worldSize)
      : NCCLTest(path, rank, worldSize) {}

  c10::intrusive_ptr<c10d::Work> run() {
    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);

    launchDeviceSleep();
    valueInitialization();

    using namespace torch::autograd::profiler;
    // Make sure enabling profile does not make any issue. Note, in single
    // process multi-device mode we do not expect any events be populated for
    // collective operations, since profiling for that mode is not supported.
    enableProfilerLegacy(ProfilerConfig(ProfilerState::CPU));
    auto results = pg_->allreduce(tensors_);
    disableProfilerLegacy();
    return results;
  }
};

class SparseAllreduceNCCLTest : public NCCLTest {
 public:
  SparseAllreduceNCCLTest(
      const std::string& path,
      int rank,
      int worldSize,
      int inputDim)
      : NCCLTest(
            path,
            rank,
            worldSize,
            c10d::kProcessGroupNCCLDefaultTimeout,
            inputDim) {}

  c10::intrusive_ptr<c10d::Work> run() {
    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);
    launchDeviceSleep();
    valueInitializationForSparse();
    auto results = pg_->allreduce_sparse(tensors_);
    return results;
  }
};

class BroadcastNCCLTest : public NCCLTest {
 public:
  BroadcastNCCLTest(const std::string& path, int rank, int worldSize)
      : NCCLTest(path, rank, worldSize) {}

  c10::intrusive_ptr<c10d::Work> run(int rootRank, int rootTensor) {
    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);

    launchDeviceSleep();
    valueInitialization();

    ::c10d::BroadcastOptions options;
    options.rootRank = rootRank;
    options.rootTensor = rootTensor;
    return pg_->broadcast(tensors_, options);
  }
};

class ReduceNCCLTest : public NCCLTest {
 public:
  ReduceNCCLTest(const std::string& path, int rank, int worldSize)
      : NCCLTest(path, rank, worldSize) {}

  c10::intrusive_ptr<c10d::Work> run(int rootRank, int rootTensor) {
    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);

    launchDeviceSleep();
    valueInitialization();

    ::c10d::ReduceOptions options;
    options.rootRank = rootRank;
    options.rootTensor = rootTensor;
    return pg_->reduce(tensors_, options);
  }
};

class AllgatherNCCLTest : public NCCLTest {
 public:
  AllgatherNCCLTest(const std::string& path, int rank, int worldSize)
      : NCCLTest(path, rank, worldSize) {}

  c10::intrusive_ptr<c10d::Work> run() {
    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);

    launchDeviceSleep();
    valueInitialization();

    return pg_->allgather(outputs_, tensors_);
  }
};

class AllgatherBaseNCCLTest : public NCCLTest {
 public:
  AllgatherBaseNCCLTest(const std::string& path, int rank, int worldSize)
      : NCCLTest(path, rank, worldSize) {
    output_tensor_ = at::empty({worldSize_, 3, 3}, at::kCUDA);
  }

  c10::intrusive_ptr<c10d::Work> run() {
    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);

    launchDeviceSleep();
    valueInitialization();
    // contains at least one element otherwise wouldn't run.
    // this is a flattened allgather, hence one rank contributes
    // only 1 tensor, regardless of number of devices
    return pg_->_allgather_base(output_tensor_, tensors_[0]);
  }

  at::Tensor getOutputTensor() {
    c10::cuda::CUDAMultiStreamGuard guard(streams_);
    return output_tensor_.cpu();
  }

  at::Tensor getInputTensor() {
    c10::cuda::CUDAMultiStreamGuard guard(streams_);
    return tensors_[0].cpu();
  }

 private:
  at::Tensor output_tensor_;
};

struct ReduceScatterNCCLTest : NCCLTest {
  ReduceScatterNCCLTest(const std::string& path, int rank, int worldSize)
      : NCCLTest(path, rank, worldSize) {}

  c10::intrusive_ptr<c10d::Work> run() {
    // For the duration of this function, make THC use our streams
    c10::cuda::CUDAMultiStreamGuard guard(streams_);

    at::cuda::OptionalCUDAGuard deviceGuard;
    launchDeviceSleep();

    // Launch value initialization for every tensor
    for (auto j = 0; j < worldSize_; ++j) {
      inputs_[0][j].fill_(rank_ * worldSize_ + j);
    }

    return pg_->reduce_scatter(tensors_, inputs_);
  }
};

class ReduceScatterBaseNCCLTest : public NCCLTest {
 public:
  ReduceScatterBaseNCCLTest(const std::string& path, int rank, int worldSize)
      : NCCLTest(path, rank, worldSize) {
    at::cuda::OptionalCUDAGuard deviceGuard;
    deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
    output_tensor_ = at::empty({1}, at::kCUDA);
    input_tensor_ = at::empty({worldSize}, at::kCUDA);
    for (const auto i : c10::irange(worldSize)) {
      input_tensor_[i] = i;
    }
  }

  c10::intrusive_ptr<c10d::Work> run() {
    // For the duration of this function, make THC use our streams
    at::cuda::CUDAMultiStreamGuard guard(streams_);

    launchDeviceSleep();
    return pg_->_reduce_scatter_base(output_tensor_, input_tensor_);
  }

  at::Tensor getOutputTensor() {
    at::cuda::CUDAMultiStreamGuard guard(streams_);
    return output_tensor_.cpu();
  }

  at::Tensor getInputTensor() {
    at::cuda::CUDAMultiStreamGuard guard(streams_);
    return input_tensor_.cpu();
  }

 private:
  at::Tensor output_tensor_;
  at::Tensor input_tensor_;
};

void testAllreduce(const std::string& path, int rank, int size) {
  auto test = AllreduceNCCLTest(path, rank, size);
  test.initialize(rank, size);
  auto work = test.run();
  // Wait for work to finish
  test.wait(work);

  // Validation
  const int totalNumGPUs = test.numDevices() * size;
  const auto expected = (totalNumGPUs * (totalNumGPUs - 1)) / 2;
  const auto tensors = test.getTensors();
  for (const auto& tensor : tensors) {
    const auto* const data = tensor.const_data_ptr<float>();
    for (const auto k : c10::irange(tensor.numel())) {
      EXPECT_EQ(data[k], expected)
          << "Allreduce outputs do not match expected outputs";
    }
  }
}

void testSparseAllreduce(const std::string& path, int rank, int size) {
  const int inputDim = 3;
  auto test = SparseAllreduceNCCLTest(path, rank, size, inputDim);
  test.initialize(rank, size);
  auto work = test.run();
  // Wait for work to finish
  test.wait(work);

  const auto input_tensors = test.getTensors();

  // validate the work output is same as tensor
  auto output_tensor = work->result();
  // Validation
  int totalNumGPUs = test.numDevices() * size;
  // Add one since we are seeding with an additional 1 to prevent empty tensors
  totalNumGPUs++;
  const auto expected = (totalNumGPUs * (totalNumGPUs - 1)) / 2;
  for (const auto i : c10::irange(input_tensors.size())) {
    const auto& tensor = input_tensors[i];

    // validate the tensor is sparse
    EXPECT_EQ(tensor.is_sparse(), true);

    auto indices = tensor._indices();
    auto values = tensor._values();

    // validate indices are expected size
    auto sizes = indices.sizes();
    EXPECT_EQ(sizes.size(), 2);
    if (sizes[0] == 1) {
      // row indices
      EXPECT_EQ(sizes[1], inputDim);
    } else if (sizes[0] == 2) {
      // coordinate indices
      EXPECT_EQ(sizes[1], inputDim * inputDim);
    }

    // validate all tensor values are expected value
    const auto* const data = values.const_data_ptr<float>();
    for (const auto k : c10::irange(values.numel())) {
      EXPECT_EQ(data[k], expected)
          << "Allreduce outputs do not match expected outputs";
    }

    // expect the input and output tensors should be the same
    auto input_dense = tensor.to_dense();
    auto output_dense = output_tensor[i].to(input_dense.device()).to_dense();
    EXPECT_TRUE(input_dense.allclose(output_dense));
  }
}

void testSparseAllreduceLarge(const std::string& path, int rank, int size) {
  const int inputDim = 2500;
  auto test = SparseAllreduceNCCLTest(path, rank, size, inputDim);
  test.initialize(rank, size);
  auto work = test.run();
  // Wait for work to finish
  test.wait(work);

  const auto input_tensors = test.getTensors();

  // validate the work output is same as tensor
  auto output_tensor = work->result();
  // Validation
  int totalNumGPUs = test.numDevices() * size;
  // Add one since we are seeding with an additional 1 to prevent empty tensors
  totalNumGPUs++;
  const auto expected = (totalNumGPUs * (totalNumGPUs - 1)) / 2;
  for (const auto i : c10::irange(input_tensors.size())) {
    const auto& tensor = input_tensors[i];

    // validate the tensor is sparse
    EXPECT_EQ(tensor.is_sparse(), true);

    auto indices = tensor._indices();
    auto values = tensor._values();

    // validate indices are expected size
    auto sizes = indices.sizes();
    EXPECT_EQ(sizes.size(), 2);
    if (sizes[0] == 1) {
      // row indices
      EXPECT_EQ(sizes[1], inputDim);
    } else if (sizes[0] == 2) {
      // coordinate indices
      EXPECT_EQ(sizes[1], inputDim * inputDim);
    }

    // validate all tensor values are expected value
    const auto* const data = values.const_data_ptr<float>();
    for (const auto k : c10::irange(values.numel())) {
      EXPECT_EQ(data[k], expected)
          << "Allreduce outputs do not match expected outputs";
    }

    // expect the input and output tensors should be the same
    auto input_dense = tensor.to_dense();
    auto output_dense = output_tensor[i].to(input_dense.device()).to_dense();
    EXPECT_TRUE(input_dense.allclose(output_dense));
  }
}

void testBroadcast(const std::string& path, int rank, int size) {
  auto test = BroadcastNCCLTest(path, rank, size);
  test.initialize(rank, size);

  const int numDevices = test.numDevices();
  // try every permutation of root rank and root tensor
  for (const auto rootRank : c10::irange(size)) {
    for (const auto rootTensor : c10::irange(numDevices)) {
      auto work = test.run(rootRank, rootTensor);

      // wait for work to complete
      test.wait(work);

      // Check results
      const auto expected = (rootRank * numDevices + rootTensor);
      const auto tensors = test.getTensors();
      for (const auto& tensor : tensors) {
        const auto* const data = tensor.const_data_ptr<float>();
        for (const auto k : c10::irange(tensor.numel())) {
          EXPECT_EQ(data[k], expected)
              << "Broadcast outputs do not match expected outputs";
        }
      }
    }
  }
}

void testReduce(const std::string& path, int rank, int size) {
  auto test = ReduceNCCLTest(path, rank, size);
  test.initialize(rank, size);

  const int numDevices = test.numDevices();
  // try every permutation of root rank and root tensor
  for (const auto rootRank : c10::irange(size)) {
    for (const auto rootTensor : c10::irange(numDevices)) {
      auto work = test.run(rootRank, rootTensor);

      // wait for work to complete
      test.wait(work);

      // Validation
      const int totalNumGPUs = numDevices * size;
      const auto expected = (totalNumGPUs * (totalNumGPUs - 1)) / 2;
      auto tensors = test.getTensors();
      if (rank == rootRank) {
        auto& tensor = tensors[rootTensor];
        auto data = tensor.data_ptr<float>();
        for (const auto k : c10::irange(tensor.numel())) {
          EXPECT_EQ(data[k], expected)
              << "Reduce outputs do not match expected outputs";
        }
      }
    }
  }
}

void testAllgather(const std::string& path, int rank, int size) {
  auto test = AllgatherNCCLTest(path, rank, size);
  test.initialize(rank, size);
  auto work = test.run();
  // Wait for work to finish
  test.wait(work);

  // Validation
  auto tensors = test.getOutputTensors();
  // device index
  for (auto& device : tensors) {
    // rank index
    for (const auto j : c10::irange(device.size())) {
      const auto expected = j;
      auto& tensor = device[j];
      auto data = tensor.data_ptr<float>();
      for (const auto k : c10::irange(tensor.numel())) {
        EXPECT_EQ(data[k], expected)
            << "Allgather outputs do not match expected outputs";
      }
    }
  }
}

void testAllgatherBase(const std::string& path, int rank, int size) {
  auto test = AllgatherBaseNCCLTest(path, rank, size);
  test.initialize(rank, size);
  auto work = test.run();
  // Wait for work to finish
  test.wait(work);
  // Validation
  auto output_tensor = test.getOutputTensor();
  auto input_tensor = test.getInputTensor();

  auto data = output_tensor.data_ptr<float>();

  // Rank index
  for (const auto i : c10::irange(output_tensor.numel())) {
    // expected is i // input.numel() <- rank, and each rank contributed rank *
    // num_gpu
    const auto expected = (i / input_tensor.numel()) * test.numDevices();
    EXPECT_EQ(data[i], expected)
        << "Allgather_base outputs do not match expected outputs";
  }
}
void testReduceScatterBase(const std::string& path, int rank, int size) {
  auto test = ReduceScatterBaseNCCLTest(path, rank, size);
  test.initialize(rank, size);
  auto work = test.run();
  // Wait for work to finish
  test.wait(work);
  // Validation
  auto output_tensor = test.getOutputTensor();
  auto input_tensor = test.getInputTensor();

  auto data = output_tensor.data_ptr<float>();

  // Rank index
  for (const auto i : c10::irange(output_tensor.numel())) {
    // expected is i * input.numel() <- rank, and each rank contributed rank *
    // num_gpu
    const auto expected = size * rank * test.numDevices();
    EXPECT_EQ(data[i], expected)
        << "Reducescatter_base outputs do not match expected outputs";
  }
}

void testReduceScatter(const std::string& path, int rank, int size) {
  auto test = ReduceScatterNCCLTest(path, rank, size);
  test.initialize(rank, size);
  auto work = test.run();
  // Wait for work to finish
  test.wait(work);

  const auto participants = size;
  const auto base = (participants * (participants - 1)) / 2;

  // Validation
  auto tensors = test.getTensors();
  const auto modifier = rank * participants;
  const auto expected = base * participants + modifier;
  auto& tensor = tensors[0];
  auto data = tensor.data_ptr<float>();
  for (const auto j : c10::irange(tensor.numel())) {
    EXPECT_EQ(data[j], expected)
        << "ReduceScatter outputs do not match expected outputs!";
  }
}

void testSequenceNumInit(const std::string& path, int rank, int size) {
  NCCLTest test(path, rank, size);
  test.initialize(rank, size);
  test.getProcessGroup()->setSequenceNumberForGroup();
  auto seqNum = test.getProcessGroup()->getSequenceNumberForGroup();
  EXPECT_EQ(seqNum, 0);
}

void testSplittingCommunicator(const std::string& path, int rank, int size) {
  auto test1 = BroadcastNCCLTest(path, rank, size);
  test1.initialize(rank, size);

  auto test2 = BroadcastNCCLTest(path, rank, size);
  test2.initialize(rank, size, test1.getProcessGroup());

  // Steal the broadcast test and issue it for both of our groups.
  // This ensures consistent full collective communication.  TODO:
  // maybe refactor the guts rather than copy-pasta, but it may not be
  // worth it.
  for (auto test : {&test1, &test2}) {
    const int numDevices = test->numDevices();
    // try every permutation of root rank and root tensor
    for (const auto rootRank : c10::irange(size)) {
      for (const auto rootTensor : c10::irange(numDevices)) {
        auto work = test->run(rootRank, rootTensor);
        test->wait(work);

        // Check results
        const auto expected = (rootRank * numDevices + rootTensor);
        const auto tensors = test->getTensors();
        for (const auto& tensor : tensors) {
          const auto* const data = tensor.const_data_ptr<float>();
          for (const auto k : c10::irange(tensor.numel())) {
            EXPECT_EQ(data[k], expected)
                << "Broadcast outputs do not match expected outputs";
          }
        }
      }
    }
  }

  // Now that we've run full operations on both the original and split process
  // group, ensure we saw exactly as many splits as we expected: 0 in the
  // original process group, and one per device in the second.
  EXPECT_EQ(test2.getProcessGroup()->getCommSplitCounter(), 0);
  EXPECT_EQ(test1.getProcessGroup()->getCommSplitCounter(), test1.numDevices());
}

// All testAbc's use this signature
using FuncType = void (*)(const std::string&, int, int);

class ProcessGroupNCCLTest : public ::testing::Test {
 protected:
  void SetUp() override {
    c10::initLogging();
    // Use WORLD_SIZE and RANK environmental variables to do multi-node
    // distributed testing
    auto sizeEnv = std::getenv("WORLD_SIZE");
    if (sizeEnv) {
      size_ = std::stoi(std::string(sizeEnv));
    }
    LOG(INFO) << "ProcessGroupNCCLTest world size: " << size_;
  }

  void TearDown() override {
    // Reset TORCH_NCCL_BLOCKING_WAIT environment variable after each run.
    ASSERT_TRUE(setenv(c10d::TORCH_NCCL_BLOCKING_WAIT[0].c_str(), "0", 1) == 0);
  }

  bool skipTest() {
    // Skip tests if CUDA is not available.
    if (!at::cuda::is_available()) {
      LOG(INFO) << "CUDA not available, skipping test";
      return true;
    }
    return false;
  }

  void multiThreadRun(FuncType testFunc) {
    TemporaryFile file;
    std::vector<std::thread> threads;
    threads.reserve(size_);
    for (const auto rank : c10::irange(size_)) {
      threads.emplace_back(testFunc, file.path, rank, size_);
    }
    for (const auto rank : c10::irange(size_)) {
      threads[rank].join();
    }
  }

  int size_{1};
};

TEST_F(ProcessGroupNCCLTest, CUDAEventCache) {
  if (skipTest()) {
    return;
  }

  // Test that the CUDAEventCache can be used to create CUDA events and reuse.
  auto event1 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1).create(true);
  auto event2 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1).create(false);

  auto event1_ptr = event1.get();
  auto event2_ptr = event2.get();
  // Mimic the behavior of the destroy of events.
  event1 = nullptr;
  event2 = nullptr;

  // Test that the CUDAEventCache is indeed reused.
  auto event3 = c10d::ProcessGroupNCCL::CUDAEventCache::get(2).create(true);
  auto event4 = c10d::ProcessGroupNCCL::CUDAEventCache::get(2).create(false);
  // The cache has been used up, new events should be created.
  auto event5 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1).create(true);
  auto event6 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1).create(false);
  // The cache has been used up, new events should be created.
  auto event7 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1).create(true);
  auto event8 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1).create(false);
  EXPECT_NE(event1_ptr, event3.get());
  EXPECT_NE(event2_ptr, event4.get());
  EXPECT_EQ(event1_ptr, event5.get());
  EXPECT_EQ(event2_ptr, event6.get());
  EXPECT_NE(event1_ptr, event7.get());
  EXPECT_NE(event2_ptr, event8.get());
}

TEST_F(ProcessGroupNCCLTest, testAllreduce) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testAllreduce);
}

TEST_F(ProcessGroupNCCLTest, testBroadcast) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testBroadcast);
}

TEST_F(ProcessGroupNCCLTest, testReduce) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testReduce);
}

TEST_F(ProcessGroupNCCLTest, testAllgather) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testAllgather);
}

TEST_F(ProcessGroupNCCLTest, testAllgatherBase) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testAllgatherBase);
}

TEST_F(ProcessGroupNCCLTest, testReduceScatter) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testReduceScatter);
}

TEST_F(ProcessGroupNCCLTest, testSequenceNumInit) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testSequenceNumInit);
}

TEST_F(ProcessGroupNCCLTest, testReduceScatterBase) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testReduceScatterBase);
}

TEST_F(ProcessGroupNCCLTest, testBackendName) {
  if (skipTest()) {
    return;
  }
  TemporaryFile file;
  auto test = NCCLTestBase(file.path);
  test.initialize(/*rank=*/0, /*size=*/1);
  EXPECT_EQ(
      test.getProcessGroup()->getBackendName(),
      std::string(c10d::NCCL_BACKEND_NAME));
}

TEST_F(ProcessGroupNCCLTest, testSplittingCommunicator) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testSplittingCommunicator);
}

#ifdef IS_NCCLX
TEST_F(ProcessGroupNCCLTest, testSparseAllreduce) {
  if (skipTest()) {
    return;
  }
  multiThreadRun(testSparseAllreduce);
  multiThreadRun(testSparseAllreduceLarge);
}
#endif