1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/runtime/calculate_necessary_args.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/export_bytecode.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/script.h>
#include <torch/torch.h>
#include "caffe2/serialize/istream_adapter.h"
namespace torch {
namespace jit {
namespace {
Module roundtripThroughMobile(const Module& m) {
ExtraFilesMap files;
std::vector<IValue> constants;
jitModuleToPythonCodeAndConstants(m, &files, &constants);
CompilationOptions options;
mobile::Module mobilem = jitModuleToMobile(m, options);
return jitModuleFromSourceAndConstants(
mobilem._ivalue(), files, constants, 8);
}
template <class Functor>
inline void expectThrowsEq(Functor&& functor, const char* expectedMessage) {
try {
std::forward<Functor>(functor)();
} catch (const Error& e) {
EXPECT_STREQ(e.what_without_backtrace(), expectedMessage);
return;
}
ADD_FAILURE() << "Expected to throw exception with message \""
<< expectedMessage << "\" but didn't throw";
}
} // namespace
TEST(SerializationTest, ExtraFilesHookPreference) {
// Tests that an extra file written explicitly has precedence over
// extra files written by a hook
// TODO: test for the warning, too
const auto script = R"JIT(
def forward(self):
x = torch.rand(5, 5)
x = x.mm(x)
return x
)JIT";
auto module =
std::make_shared<Module>("Module", std::make_shared<CompilationUnit>());
module->define(script);
std::ostringstream oss;
std::unordered_map<std::string, std::string> extra_files;
extra_files["metadata.json"] = "abc";
SetExportModuleExtraFilesHook([](const Module&) -> ExtraFilesMap {
return {{"metadata.json", "def"}};
});
module->save(oss, extra_files);
SetExportModuleExtraFilesHook(nullptr);
std::istringstream iss(oss.str());
caffe2::serialize::IStreamAdapter adapter{&iss};
std::unordered_map<std::string, std::string> loaded_extra_files;
loaded_extra_files["metadata.json"] = "";
auto loaded_module = torch::jit::load(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
}
TEST(SerializationTest, ExtraFileHooksNoSecret) {
// no secrets
std::stringstream ss;
{
Module m("__torch__.m");
ExtraFilesMap extra;
extra["metadata.json"] = "abc";
m.save(ss, extra);
}
ss.seekg(0);
{
ExtraFilesMap extra;
extra["metadata.json"] = "";
extra["secret.json"] = "";
jit::load(ss, std::nullopt, extra);
ASSERT_EQ(extra["metadata.json"], "abc");
ASSERT_EQ(extra["secret.json"], "");
}
}
TEST(SerializationTest, ExtraFileHooksWithSecret) {
std::stringstream ss;
{
SetExportModuleExtraFilesHook([](const Module&) -> ExtraFilesMap {
return {{"secret.json", "topsecret"}};
});
Module m("__torch__.m");
ExtraFilesMap extra;
extra["metadata.json"] = "abc";
m.save(ss, extra);
SetExportModuleExtraFilesHook(nullptr);
}
ss.seekg(0);
{
ExtraFilesMap extra;
extra["metadata.json"] = "";
extra["secret.json"] = "";
jit::load(ss, std::nullopt, extra);
ASSERT_EQ(extra["metadata.json"], "abc");
ASSERT_EQ(extra["secret.json"], "topsecret");
}
}
TEST(SerializationTest, TypeTags) {
auto list = c10::List<c10::List<int64_t>>();
list.push_back(c10::List<int64_t>({1, 2, 3}));
list.push_back(c10::List<int64_t>({4, 5, 6}));
auto dict = c10::Dict<std::string, at::Tensor>();
dict.insert("Hello", torch::ones({2, 2}));
auto dict_list = c10::List<c10::Dict<std::string, at::Tensor>>();
for (size_t i = 0; i < 5; i++) {
auto another_dict = c10::Dict<std::string, at::Tensor>();
another_dict.insert("Hello" + std::to_string(i), torch::ones({2, 2}));
dict_list.push_back(another_dict);
}
auto tuple = std::tuple<int, std::string>(2, "hi");
struct TestItem {
IValue value;
TypePtr expected_type;
};
std::vector<TestItem> items = {
{list, ListType::create(ListType::create(IntType::get()))},
{2, IntType::get()},
{dict, DictType::create(StringType::get(), TensorType::get())},
{dict_list,
ListType::create(
DictType::create(StringType::get(), TensorType::get()))},
{tuple, TupleType::create({IntType::get(), StringType::get()})}};
// NOLINTNEXTLINE(performance-for-range-copy)
for (auto item : items) {
auto bytes = torch::pickle_save(item.value);
auto loaded = torch::pickle_load(bytes);
ASSERT_TRUE(loaded.type()->isSubtypeOf(*item.expected_type));
ASSERT_TRUE(item.expected_type->isSubtypeOf(*loaded.type()));
}
}
TEST(SerializationTest, TestJitStream_CUDA) {
torch::jit::Module model;
std::vector<torch::jit::IValue> inputs;
// Deserialize the ScriptModule from a file using torch::jit::load().
// Load the scripted model. This should have been generated by tests_setup.py
// Refer: TorchSaveJitStream_CUDA in test/cpp/jit/tests_setup.py
model = torch::jit::load("saved_stream_model.pt");
auto output = model.forward(inputs);
const auto& list_of_elements = output.toTupleRef().elements();
auto is_stream_s = list_of_elements[0].toBool();
// a,b: These are the two input tensors
// c: This is output tensor generated by the operation torch.cat(a,b)
auto a = list_of_elements[1].toTensor();
auto b = list_of_elements[2].toTensor();
auto c = list_of_elements[3].toTensor();
// op: this is used to verify if the cat operation produced the same results
// as that on the GPU with torch.cat
auto op = at::cat({a, b}, 0);
// Check if the stream is set
ASSERT_TRUE(is_stream_s);
// Check if the sizes of the outputs (op and c) is same on the GPU and CPU
ASSERT_EQ(op.sizes(), c.sizes());
// Check if both the output tensors are equal
ASSERT_TRUE(op.equal(c));
}
TEST(TestSourceRoundTrip, UpsampleNearest2d) {
Module m("m");
m.define(R"(
def forward(self, input: Tensor, scale:float):
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({1, 3, 128, 128}));
inputs.emplace_back(at::Scalar(2.0));
auto ref = m.forward(inputs);
Module m2 = roundtripThroughMobile(m);
auto res = m2.forward(inputs);
auto resd = res.toTensor();
auto refd = ref.toTensor();
ASSERT_TRUE(resd.equal(refd));
}
TEST(TestSourceRoundTrip, CheckAttrAccess) {
Module m("m");
m.register_attribute("mobile_optimized", BoolType::get(), true);
Module m2 = roundtripThroughMobile(m);
bool mobile_optimized = m2.attr("mobile_optimized", false).toBool();
AT_ASSERT(mobile_optimized);
}
TEST(TestSourceRoundTrip,
MethodInvocation) { // NOLINT (use =delete in gtest)
const std::vector<std::string> test_programs{
// test invoking a method with default parameter
R"(
def test_func(self, x, b : int = 4):
return self.foo + x + b
)",
// inner method call with default parameter (gets inlined)
R"(
def add_with_default_arg(self, x, b : int = 4):
return self.foo + x + b
def test_func(self, x):
return self.add_with_default_arg(x) # invoke method w/ default arg
)",
// simple method call
R"(
def test_func(self, x):
b = 4
return self.foo + x + b
)",
};
for (const auto& test_program : test_programs) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(test_program);
const int fortyTwo = 42; // (keep linter happy)
auto minput = fortyTwo * torch::ones({});
auto ref = m.run_method("test_func", minput);
Module m2 = roundtripThroughMobile(m);
const auto& test_func = m2.get_method("test_func");
IValue res;
for (int i = 0; i < 3; ++i) {
res = test_func({minput});
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
}
TEST(SerializationTest, ParentDirNotExist) {
expectThrowsEq(
[]() {
auto t = torch::nn::Linear(5, 5);
torch::save(t, "./doesnotexist/file.pt");
},
"Parent directory ./doesnotexist does not exist.");
}
#ifdef WIN32
TEST(SerializationTest, WindowsDrivePathTest) {
// "ZZZ" is typically not a valid drive letter.
// We expect to see "ZZZ:\\" or "ZZZ:/" in the error message.
// Note: slash should be included for the drive letter parent in Windows.
expectThrowsEq(
[]() {
auto t = torch::nn::Linear(5, 5);
torch::save(t, "ZZZ:\\file.pt");
},
"Parent directory ZZZ:\\ does not exist.");
expectThrowsEq(
[]() {
auto t = torch::nn::Linear(5, 5);
torch::save(t, "ZZZ:/file.pt");
},
"Parent directory ZZZ:/ does not exist.");
}
TEST(SerializationTest, WindowsTempPathTest) {
// Test for verifying file saving and loading in the temporary folder
std::string temp_dir = std::getenv("TEMP");
std::string file_path = temp_dir + "/file.pt";
auto t1 = torch::tensor(1.0);
torch::save(t1, file_path);
torch::Tensor t2;
torch::load(t2, file_path);
ASSERT_TRUE(t1.allclose(t2, 0.0, 0.0));
}
#endif
TEST(SerializationTest, CalculateNecessaryArgsTest) {
auto schema = torch::schema(
"sync_stream(int stream_id = -1) -> ()",
c10::AliasAnalysisKind::CONSERVATIVE);
auto graph = std::make_shared<Graph>();
auto one_val = graph->insertConstant(-1);
auto necessary = CalculateNecessaryArgs(schema.arguments(), {one_val}, true);
EXPECT_EQ(0, necessary.first);
EXPECT_EQ(0, necessary.second);
}
TEST(TestSaveLoad, LoadWithoutDebugInfo) { // NOLINT (use =delete in gtest)
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(
R"(
def test_func(self, x):
b = 4
return self.foo + x + b
)");
m.define(
R"(
def exception(self):
assert False, "message"
)");
std::stringstream ss;
m.save(ss);
ss.seekg(0);
caffe2::serialize::PyTorchStreamReader reader(&ss);
reader.setShouldLoadDebugSymbol(true);
EXPECT_TRUE(reader.hasRecord("code/__torch__.py.debug_pkl"));
reader.setShouldLoadDebugSymbol(false);
EXPECT_FALSE(reader.hasRecord("code/__torch__.py.debug_pkl"));
ss.seekg(0);
Module m2 = torch::jit::load(ss);
std::string error_msg = R"(
def exception(self):
assert False, "message"
~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE)";
ASSERT_THROWS_WITH_MESSAGE(m2.run_method("exception"), error_msg);
ss.seekg(0);
// NO DEBUG trace so error message points to torchscript generated
// source instead of original python source.
std::string error2 = R"(
def exception(self: __torch__.m) -> NoneType:
_0 = uninitialized(NoneType)
ops.prim.RaiseException("AssertionError: message")
~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
return _0
)";
Module m3 = torch::jit::load(ss, std::nullopt, false);
ASSERT_THROWS_WITH_MESSAGE(m3.run_method("exception"), error2);
}
TEST(SerializationTest, TestPickleAppend) {
auto data = std::vector<char>({'\x80', char(2), ']', 'K', char(2), 'a', '.'});
torch::IValue actual = torch::jit::unpickle(data.data(), data.size());
torch::IValue expected = c10::impl::GenericList(at::AnyType::get());
expected.toList().push_back(2);
ASSERT_EQ(expected, actual);
}
} // namespace jit
} // namespace torch
|