File: open_registration_extension.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (707 lines) | stat: -rw-r--r-- 31,111 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#include <unordered_map>
#include <c10/core/impl/alloc_cpu.h>
#include <c10/core/Allocator.h>
#include <c10/core/ScalarType.h>
#include <c10/util/ArrayRef.h>

#include <torch/csrc/Device.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <c10/core/impl/DeviceGuardImplInterface.h>
#include <c10/macros/Macros.h>
#include <torch/extension.h>

#include <ATen/native/cpu/Loops.h>
#include <ATen/native/quantized/AffineQuantizer.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/Resize.h>
#include <ATen/native/UnaryOps.h>
#include <ATen/native/CPUFallback.h>
#include <ATen/ops/abs_native.h>
#include <ATen/EmptyTensor.h>
#include <ATen/core/GeneratorForPrivateuseone.h>
#include <ATen/detail/PrivateUse1HooksInterface.h>
#include <ATen/ops/view.h>
#include <ATen/native/transformers/sdp_utils_cpp.h>
#include <ATen/native/transformers/attention.h>

static uint64_t add_counter = 0;
static uint64_t last_saved_value = 0;
static c10::DeviceIndex custom_device_index = 0;

static uint64_t abs_counter = 0;
static uint64_t last_abs_saved_value = 0;

static uint64_t storageImpl_counter = 0;
static uint64_t last_storageImpl_saved_value = 0;
// register guard
namespace at {
namespace detail {

C10_REGISTER_GUARD_IMPL(
    PrivateUse1,
    c10::impl::NoOpDeviceGuardImpl<DeviceType::PrivateUse1>);

}} // namespace at::detail

namespace {

// Using the simplest way to obtain continuous Tensor data and process it.
// This is a demo for using operand API, and you can add more complex logic
// for input and output tensor based on your custom device kernel.
void abs_kernel(at::TensorIteratorBase& iter) {
  // Abs only have a input tensor and a output tensor.
  auto& output_operand = iter.operand(0);
  auto& input_operand = iter.operand(1);
  auto& output_tensor_base = output_operand.tensor_base();
  auto& input_tensor_base = input_operand.tensor_base();
  TORCH_CHECK(!input_operand.original_tensor_base().defined(),
    "input original tensor is defined.");
  TORCH_CHECK(!output_operand.original_tensor_base().defined(),
    "output original tensor is defined.");
  // For easy test, only accept contiguous input tensor for calculate.
  auto memory_format = input_tensor_base.suggest_memory_format();
  TORCH_CHECK(input_tensor_base.is_contiguous(memory_format),
    "Input tensor need be contiguous.");
  // Add necessary restrictions to ensure the security of the demo.
  TORCH_CHECK(input_tensor_base.sizes() == output_tensor_base.sizes(),
    "Intput and output tensor size are not equal.");
  // Common dtype is calculate in TensorIteratorBase.
  TORCH_CHECK(iter.common_dtype() == at::ScalarType::Float,
    "Only support float type.")
  // Using for loop for abs calculate.
  auto abs_function = [](float* output_ptr, const float* input_ptr,
                         const int64_t NUM) {
    for (int64_t i = 0; i < NUM; ++i) {
      *(output_ptr + i) = std::abs(*(input_ptr + i));
    }
  };
  // To simplify the logic of the test demo code,
  // we only use contiguous tensor to calculate on device side.
  // And using input tensor memory format.
  if (iter.is_contiguous()) {
    // Add for will_resize flag check. You can convert to differernt
    // tensor memory format when will_resize is True.
    // If TensorIteratorConfig resize_outputs_ flag is true, and there are two
    // situations:
    // 1) Out tensor is undefined, and TensorIterator set will_resize to true;
    // 2) Out tensor is defined and tensor size is not equal to input tensor size;
    //    TensorIterator set will_resize to true, and call set_output_raw_strided
    //    to resize output tensor.
    // When output operand will_resize flag is ture, dummy
    // device can convert tensor to dummy device preferred memory format.
    // Here we don't convert tensor memory format, because it will become complex
    // when dummy device want keep same memory format for training network.
    TORCH_CHECK(output_operand.will_resize,
      "output operand will_resize flag need be True.");
    abs_function((float*)iter.data_ptr(0), (float*)iter.data_ptr(1), iter.numel());
  } else {
    // Stride copy is not support for foo device, using cpu device instead.
    // For abs op, the last situation is: output tensor is not contiguous with
    // operand will_resize is False.
    TORCH_CHECK(!output_operand.will_resize, "output operand will_resize is True.");
    // Get a contiguous tensor with input memory format.
    at::Tensor output = at::empty(output_tensor_base.sizes(),
                                  input_tensor_base.options()
                                                   .memory_format(memory_format));
    // For structured op which inheried from TensorIteratorBase, maybe you need to
    // call set_output_raw_strided function to update output stored in op sturctured.
    // abs op is no need to do this.
    output_operand.exchange_tensor(c10::MaybeOwned<at::TensorBase>::owned(std::in_place, output));
    abs_function((float*)output_operand.tensor_base().mutable_data_ptr(),
                 (float*)iter.data_ptr(1), iter.numel());
    // Copy tensor base to original tensor base, and keep same scalar type and
    // stride with cpu and gpu.
    if (output_operand.original_tensor_base().defined() &&
        !output_operand.original_tensor_base().is_same(output_operand.tensor_base())) {
      output_operand.original_tensor().copy_(output_operand.tensor());
      output_operand.restore_original_tensor();
    }
  }
}

void quantize_tensor_per_tensor_affine_privateuse1(
    const at::Tensor& rtensor,
    at::Tensor& qtensor,
    double scale,
    int64_t zero_point) {
    // do nothing
}

int64_t _fused_sdp_choice_privateuse1(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value,
    const std::optional<at::Tensor> & attn_mask, double dropout_p, bool is_causal, std::optional<double> scale, bool enable_gqa){
  auto backend = sdp::SDPBackend::overrideable;
  return static_cast<int64_t>(backend);
}
} // namespace

namespace at::native {

REGISTER_PRIVATEUSE1_DISPATCH(abs_stub, &abs_kernel);
REGISTER_PRIVATEUSE1_DISPATCH(quantize_tensor_per_tensor_affine_stub, &quantize_tensor_per_tensor_affine_privateuse1);
REGISTER_PRIVATEUSE1_DISPATCH(_fused_sdp_choice_stub, &_fused_sdp_choice_privateuse1);

} // namespace at::native
struct CustomBackendMetadata : public c10::BackendMeta {
  // for testing this field will mutate when clone() is called by shallow_copy_from.
  int backend_version_format_{-1};
  int format_number_{-1};
  mutable bool cloned_{false};
  // define the constructor
  CustomBackendMetadata(int backend_version_format, int format_number) :
      backend_version_format_(backend_version_format), format_number_(format_number) {}
  c10::intrusive_ptr<c10::BackendMeta> clone(
      const c10::intrusive_ptr<c10::BackendMeta>& ptr) const override {
    cloned_ = true;
    return c10::BackendMeta::clone(ptr);
  }
};

// we need to register two functions for serialization
void for_serialization(const at::Tensor& t, std::unordered_map<std::string, bool>& m) {
  if (t.unsafeGetTensorImpl()->get_backend_meta_intrusive_ptr() == nullptr) {
    return;
  }
  auto tmeta = dynamic_cast<CustomBackendMetadata*>(t.unsafeGetTensorImpl()->get_backend_meta());
  if (tmeta->backend_version_format_ == 1) {
    m["backend_version_format"] = true;
  }
  if (tmeta->format_number_ == 29) {
    m["format_number"] = true;
  }
}

void for_deserialization(const at::Tensor& t, std::unordered_map<std::string, bool>& m) {
  int backend_version_format{-1};
  int format_number{-1};
  if (m.find("backend_version_format") != m.end()) {
    backend_version_format = 1;
  }
  if (m.find("format_number") != m.end()) {
    format_number = 29;
  }
  c10::intrusive_ptr<c10::BackendMeta> new_tmeta{std::unique_ptr<c10::BackendMeta>(
      new CustomBackendMetadata(backend_version_format, format_number))};
  t.unsafeGetTensorImpl()->set_backend_meta(new_tmeta);
}

void custom_serialization_registry() {
  torch::jit::TensorBackendMetaRegistry(c10::DeviceType::PrivateUse1,
                                        &for_serialization,
                                        &for_deserialization);
}

//check if BackendMeta serialization correctly
bool check_backend_meta(const at::Tensor& t) {
  if (t.unsafeGetTensorImpl()->get_backend_meta_intrusive_ptr()) {
    CustomBackendMetadata* tmeta = dynamic_cast<CustomBackendMetadata*>(
        t.unsafeGetTensorImpl()->get_backend_meta());
    if (tmeta->backend_version_format_==1 && tmeta->format_number_==29) {
      return true;
    }
  }
  return false;
}

// a fake set function is exposed to the Python side
void custom_set_backend_meta(const at::Tensor& t) {
  int backend_version_format{1};
  int format_number{29};
  c10::intrusive_ptr<c10::BackendMeta> new_tmeta{std::unique_ptr<c10::BackendMeta>(
      new CustomBackendMetadata(backend_version_format, format_number))};
  t.unsafeGetTensorImpl()->set_backend_meta(new_tmeta);
}

// A dummy storageImpl for our custom device, that secretly uses the CPU
c10::intrusive_ptr<c10::StorageImpl> make_custom_storage_impl(c10::StorageImpl::use_byte_size_t,
                                                              c10::SymInt size_bytes,
                                                              c10::DataPtr data_ptr,
                                                              c10::Allocator* allocator,
                                                              bool resizable) {
  c10::intrusive_ptr<c10::StorageImpl> custom_storage_impl;
  if (data_ptr == nullptr){
    custom_storage_impl = c10::make_intrusive<c10::StorageImpl>(
      c10::StorageImpl::use_byte_size_t(), size_bytes, allocator, resizable);
  } else {
    custom_storage_impl = c10::make_intrusive<c10::StorageImpl>(
      c10::StorageImpl::use_byte_size_t(), size_bytes, std::move(data_ptr), allocator, resizable);
  }
  storageImpl_counter += 1;
  return custom_storage_impl;
}

// Register our dummy storageImpl create method.
void custom_storage_registry() {
  c10::SetStorageImplCreate(c10::DeviceType::PrivateUse1, &make_custom_storage_impl);
}

bool custom_storageImpl_called() {
  if (storageImpl_counter > last_storageImpl_saved_value) {
    last_storageImpl_saved_value = storageImpl_counter;
    return true;
  }
  return false;
}

// basic dummy add function
at::Tensor custom_add_Tensor(const at::Tensor& self, const at::Tensor& other, const at::Scalar& alpha) {
  add_counter += 1;
  // Since this custom device is just for testing, not bothering to implement kernels.
  return at::empty(self.sizes(), self.options());
}

// basic abs function
at::Tensor& custom_abs_out(const at::Tensor& self, at::Tensor& out) {
  return at::native::abs_out(self, out);
}

// A dummy allocator for our custom device, that secretly uses the CPU
struct DummyCustomAllocator final : at::Allocator {
  DummyCustomAllocator() = default;
  at::DataPtr allocate(size_t nbytes) override {
    void* data = c10::alloc_cpu(nbytes);
    return {data, data, &ReportAndDelete, at::Device(at::DeviceType::PrivateUse1, custom_device_index)};
  }

  static void ReportAndDelete(void* ptr) {
    if (!ptr) {
      return;
    }
    c10::free_cpu(ptr);
  }

  at::DeleterFnPtr raw_deleter() const override {
    return &ReportAndDelete;
  }

  void copy_data(void* dest, const void* src, std::size_t count) const final {
    default_copy_data(dest, src, count);
  }
};

// Register our dummy allocator
static DummyCustomAllocator global_custom_alloc;
REGISTER_ALLOCATOR(c10::DeviceType::PrivateUse1, &global_custom_alloc);

// basic dummy empty function, so we can directly construct tensors on the custom device
// This dummy test device will just use the CPU allocator, and ignores pinned memory.
at::Tensor custom_empty_memory_format(at::IntArrayRef size,
                                      std::optional<at::ScalarType> dtype,
                                      std::optional<at::Layout> layout,
                                      std::optional<at::Device> device,
                                      std::optional<bool> pin_memory,
                                      std::optional<at::MemoryFormat> memory_format) {
  constexpr c10::DispatchKeySet private_use_ks(c10::DispatchKey::PrivateUse1);
  return at::detail::empty_generic(size,
                                   &global_custom_alloc,
                                   private_use_ks,
                                   c10::dtype_or_default(dtype),
                                   memory_format);
}
at::Tensor custom_empty_symint(c10::IntArrayRef size,
                               std::optional<at::ScalarType> dtype,
                               std::optional<at::Layout> layout,
                               std::optional<at::Device> device,
                               std::optional<bool> pin_memory,
                               std::optional<at::MemoryFormat> memory_format) {
  constexpr c10::DispatchKeySet private_use_ks(c10::DispatchKey::PrivateUse1);
  return at::detail::empty_generic(size,
    &global_custom_alloc, private_use_ks, c10::dtype_or_default(dtype), memory_format);
}

at::Tensor & custom_fill__scalar(at::Tensor & self, const at::Scalar & value) {
  // Not bothering to implement.
  return self;
}

// Unsafe using dummy device data_ptr to creat a cpu tensor, and shared data_ptr.
at::Tensor unsafe_create_cpu_tensor_from_dummy_tensor(const at::Tensor& src) {
  TORCH_CHECK(src.device().type() == c10::DeviceType::PrivateUse1,
              "Only support dummy device.");
  const auto& sizes_ = src.sizes();
  const auto& strides_ = src.strides();
  auto storage_offset_ = src.storage_offset();
  at::detail::check_size_nonnegative(sizes_);

  size_t size_bytes = at::detail::computeStorageNbytes(sizes_, strides_,
                                                       src.element_size(),
                                                       storage_offset_);

  at::DataPtr data_ptr =
    c10::InefficientStdFunctionContext::makeDataPtr(src.storage().mutable_data_ptr().get(),
                                                    [](void*){}, at::kCPU);

  c10::Storage storage{c10::Storage::use_byte_size_t{}, size_bytes, std::move(data_ptr),
    /*allocator=*/&global_custom_alloc, /*resizeable=*/false};

  constexpr c10::DispatchKeySet cpu_ks(c10::DispatchKey::CPU);
  at::Tensor tensor = at::detail::make_tensor<c10::TensorImpl>(
       std::move(storage), cpu_ks, src.dtype());

  c10::TensorImpl* tensor_impl = tensor.unsafeGetTensorImpl();
  tensor_impl->set_sizes_and_strides(sizes_, strides_);
  tensor_impl->set_storage_offset(storage_offset_);
  return tensor;
}

// basic dummy copy_() function, so we can copy from the custom device to/from CPU
at::Tensor custom__copy_from(const at::Tensor& self, const at::Tensor& dst, bool non_blocking) {
  TORCH_CHECK(
      self.is_cpu() || self.device().type() == c10::DeviceType::PrivateUse1,
      "Dummy test only allows copy from cpu -> dummy device.");
  TORCH_CHECK(
      dst.is_cpu() || dst.device().type() == c10::DeviceType::PrivateUse1,
      "Dummy test only allows copy from cpu -> dummy device.");

  // Some dummy asserts for the basic use case: inputs are the same size / dtype, all contiguous.
  TORCH_CHECK(self.sizes() == dst.sizes());
  TORCH_CHECK(self.scalar_type() == dst.scalar_type());

  if (self.is_contiguous() && dst.is_contiguous()) {
    std::memcpy(dst.storage().data_ptr().get(),
                self.storage().data_ptr().get(),
                self.storage().nbytes());
  } else {
    // Using cpu tensor to accomplishment stride copy.
    auto convert_to_cpu_tensor = [](const at::Tensor& src) -> at::Tensor {
      if (src.device().type() == c10::DeviceType::PrivateUse1) {
        return unsafe_create_cpu_tensor_from_dummy_tensor(src);
      } else {
        return src;
      }
    };
    at::Tensor cpu_self = convert_to_cpu_tensor(self);
    at::Tensor cpu_dst = convert_to_cpu_tensor(dst);
    cpu_dst.copy_(cpu_self);
  }

  return dst;
}

at::Tensor custom__copy_from_and_resize(const at::Tensor& self, const at::Tensor& dst) {
  return custom__copy_from(self, dst, false);
}

at::Tensor custom_empty_strided(c10::IntArrayRef size,
                                c10::IntArrayRef stride,
                                std::optional<at::ScalarType> dtype_opt,
                                std::optional<at::Layout> layout_opt,
                                std::optional<at::Device> device_opt,
                                std::optional<bool> pin_memory_opt) {
  constexpr c10::DispatchKeySet private_use_ks(c10::DispatchKey::PrivateUse1);
  auto dtype = c10::dtype_or_default(dtype_opt);
  return  at::detail::empty_strided_generic(size, stride, &global_custom_alloc, private_use_ks, dtype);
}

// Some set operations for the basic use case
at::Tensor& custom_set_source_Storage(at::Tensor& result, c10::Storage src) {
  int64_t new_size = static_cast<int64_t>(src.nbytes() / result.dtype().itemsize());
  c10::IntArrayRef stride = {};
  result.unsafeGetTensorImpl()->set_storage_offset(0);
  at::OptionalIntArrayRef stride_opt = stride.data() != nullptr ? at::OptionalIntArrayRef(stride) : std::nullopt;
  at::native::resize_impl_cpu_(result.unsafeGetTensorImpl(),
                               new_size, stride_opt,
                               /*resize_storage=*/!result.is_meta());
  return result;
}

// Some set operations for the basic use case
at::Tensor& custom_set_source_Storage_storage_offset(at::Tensor& result,
                                                     c10::Storage storage,
                                                     int64_t storage_offset,
                                                     c10::IntArrayRef size,
                                                     c10::IntArrayRef stride) {
  result.unsafeGetTensorImpl()->set_storage_offset(storage_offset);
  at::OptionalIntArrayRef stride_opt = stride.data() != nullptr ? at::OptionalIntArrayRef(stride) : std::nullopt;
  at::native::resize_impl_cpu_(result.unsafeGetTensorImpl(),
                               size, stride_opt,
                               /*resize_storage=*/!result.is_meta());
  return result;
}

const at::Tensor& custom_resize_(const at::Tensor& self, at::IntArrayRef size,
                          std::optional<at::MemoryFormat> optional_memory_format) {
  at::TensorImpl* tensor_impl = self.unsafeGetTensorImpl();
  tensor_impl->set_sizes_contiguous(size);
  const auto itemsize = tensor_impl->dtype().itemsize();
  const auto offset = tensor_impl->storage_offset();
  const auto storage_size = at::detail::computeStorageNbytesContiguous(size, itemsize, offset);
  // Dummy device is using cpu allocator, so here just call cpu
  // function maybe_resize_storage_cpu in aten/src/ATen/native/Resize.h
  // to get a sufficient memory space.
  at::native::maybe_resize_storage_cpu(tensor_impl, storage_size);
  if (optional_memory_format.has_value()) {
    auto memory_format =
        optional_memory_format.value();
    TORCH_CHECK(
        memory_format != at::MemoryFormat::Preserve,
        "Unsupported memory format",
        memory_format);
    tensor_impl->empty_tensor_restride(memory_format);
  }
  return self;
}

std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor, c10::SymInt, c10::SymInt, at::Tensor, at::Tensor, at::Tensor>
custom_scaled_dot_product_fused_attention_overrideable(
    const at::Tensor & query,
    const at::Tensor & key,
    const at::Tensor & value,
    const std::optional<at::Tensor> & attn_bias,
    double dropout_p,
    bool is_causal,
    bool return_debug_mask,
    std::optional<double> scale) {
  const int64_t batch_size = query.size(0);
  const int64_t num_heads = query.size(1);
  const int64_t head_dim_qk = query.size(3);
  const int64_t head_dim_v = value.size(3);
  const int64_t max_seqlen_q = query.size(2);
  const int64_t max_seqlen_kv = key.size(2);

  auto opts = query.options();
  auto output = at::empty({batch_size, num_heads, max_seqlen_q, head_dim_v}, opts);
  auto logsumexp = at::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
  auto debug_attn_mask = at::empty({batch_size, num_heads, max_seqlen_q, max_seqlen_kv},
                                   opts.dtype(at::kFloat));
  auto philox_seed = at::empty({}, at::dtype(at::kLong));
  auto philox_offset = at::empty({}, at::dtype(at::kLong));

  return std::make_tuple(output, logsumexp, at::Tensor(), at::Tensor(), max_seqlen_q, max_seqlen_kv, philox_seed, philox_offset, debug_attn_mask);
}
std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor>
custom_scaled_dot_product_fused_attention_overrideable_backward(
    const at::Tensor & grad_out,
    const at::Tensor & query,
    const at::Tensor & key,
    const at::Tensor & value,
    const at::Tensor & attn_bias,
    std::array<bool,4> grad_input_mask,
    const at::Tensor & out,
    const at::Tensor & logsumexp,
    const at::Tensor & cum_seq_q,
    const at::Tensor & cum_seq_k,
    int64_t max_q,
    int64_t max_k,
    double dropout_p,
    bool is_causal,
    const at::Tensor & philox_seed,
    const at::Tensor & philox_offset,
    std::optional<double> scale) {
  return std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor>(
          at::empty_like(query),
          at::empty_like(key),
          at::empty_like(value),
          at::empty_like(attn_bias));
}

// This macro does the heavy lifting.
// With TORCH_LIBRARY_IMPL, you can register custom kernels for your backend.
// For open registration, we're registering all of our kernels to the PrivateUse1 dispatch key.
// Later in this file, we map a custom device to the PrivateUse1 device type,
// which allows user code that puts a tensor on your custom_device to eventually get plumbed
// into the kernels registered here.
//
// This macro registers your kernels to the PyTorch Dispatcher.
// More details on the dispatcher can be found at http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/.
TORCH_LIBRARY_IMPL(aten, PrivateUse1, m) {
  m.impl("abs.out", &custom_abs_out);
  m.impl("add.Tensor", &custom_add_Tensor);
  m.impl("empty.memory_format", &custom_empty_symint);
  m.impl("fill_.Scalar", &custom_fill__scalar);
  m.impl("_copy_from", &custom__copy_from);
  m.impl("_copy_from_and_resize", &custom__copy_from_and_resize);
  m.impl("empty_strided", &custom_empty_strided);
  m.impl("set_.source_Storage", &custom_set_source_Storage);
  m.impl("set_.source_Storage_storage_offset",&custom_set_source_Storage_storage_offset);
  m.impl("resize_", &custom_resize_);
  m.impl("as_strided", at::native::as_strided_tensorimpl);
  m.impl("quantize_per_tensor", at::native::quantize_per_tensor);
  m.impl("_fused_sdp_choice", &_fused_sdp_choice_privateuse1);
  m.impl("_scaled_dot_product_fused_attention_overrideable", &custom_scaled_dot_product_fused_attention_overrideable);
  m.impl("_scaled_dot_product_fused_attention_overrideable_backward", &custom_scaled_dot_product_fused_attention_overrideable_backward);
}

void custom_cpu_fallback(const c10::OperatorHandle& op, torch::jit::Stack* stack) {
  at::native::cpu_fallback(op, stack);
}

TORCH_LIBRARY_IMPL(aten, PrivateUse1, m) {
  m.impl("sub.Tensor", torch::CppFunction::makeFromBoxedFunction<&custom_cpu_fallback>());
  m.impl("_foreach_add.List", torch::CppFunction::makeFromBoxedFunction<&custom_cpu_fallback>());
  m.impl("_fused_adamw_", torch::CppFunction::makeFromBoxedFunction<&custom_cpu_fallback>());
  m.impl("index.Tensor", torch::CppFunction::makeFromBoxedFunction<&custom_cpu_fallback>());
  m.impl("triu_indices", torch::CppFunction::makeFromBoxedFunction<&custom_cpu_fallback>());
}

// This basic implementation doesn't bother dealing with different device indices
// (e.g. custom_device:0 vs. custom_device:1).
// We could do that by letting the user pass in a device index in our exposed device function.
// Note that if you do that, you'll also need to register a device guard to core.
// See `c10/core/impl/DeviceGuardImplInterface.h:C10_REGISTER_GUARD_IMPL`.
c10::Device get_custom_device() {
  return c10::Device(c10::DeviceType::PrivateUse1, 0);
}

bool custom_add_called() {
  bool called = false;
  if (add_counter > last_saved_value) {
    called = true;
    last_saved_value = add_counter;
  }
  return called;
}

class PrivateGeneratorImpl : public at::CPUGeneratorImpl {
public:
  // Constructors
  PrivateGeneratorImpl(c10::DeviceIndex device_index) {
    device_ = c10::Device(c10::DeviceType::PrivateUse1, device_index);
    key_set_ = c10::DispatchKeySet(c10::DispatchKey::PrivateUse1);
  }
  ~PrivateGeneratorImpl() override = default;
};

// this is used to register generator
at::Generator make_generator_privateuse1(c10::DeviceIndex device_index) {
  return at::make_generator<PrivateGeneratorImpl>(device_index);
}

void register_generator_first() {
  REGISTER_GENERATOR_PRIVATEUSE1(make_generator_privateuse1)
}

void register_generator_second() {
  REGISTER_GENERATOR_PRIVATEUSE1(make_generator_privateuse1)
}

void set_custom_device_index(c10::DeviceIndex device_index) {
  custom_device_index = device_index;
}

// a global flag used for dummy pin_memory of custom device
bool custom_pinned_flag = false;

struct FooHooksArgs : public at::PrivateUse1HooksArgs {};

struct FooHooksInterface : public at::PrivateUse1HooksInterface {
    FooHooksInterface(FooHooksArgs) {}
    ~FooHooksInterface() override = default;
    const at::Generator& getDefaultGenerator(c10::DeviceIndex device_index) const override {
      static auto device_gen = make_generator_privateuse1(device_index);
      return device_gen;
    }
    // this is a simple implementation, custom_pinned_flag will be set as true
    // once tensor.pin_memory() is called. And then tensor.is_pinned()
    // always return true no matter what tensor it's called on.
    bool isPinnedPtr(const void* data) const override {
      return custom_pinned_flag;
    }
    c10::Allocator* getPinnedMemoryAllocator() const override {
      custom_pinned_flag = true;
      return c10::GetCPUAllocator();
    }
};

TORCH_DECLARE_REGISTRY(PrivateUse1HooksRegistry, FooHooksInterface, FooHooksArgs);
C10_DEFINE_REGISTRY(PrivateUse1HooksRegistry, FooHooksInterface, FooHooksArgs)
// Using Create function to get PrivateUse1HooksInterface point from PrivateUse1HooksRegistry class.
C10_REGISTER_TYPED_CLASS(PrivateUse1HooksRegistry, "FooHooks", FooHooksInterface)

static at::PrivateUse1HooksInterface* privateuse1_hooks_local = nullptr;
static at::PrivateUse1HooksInterface* get_private_hooks() {
  static c10::once_flag once;
  c10::call_once(once, [] {
    privateuse1_hooks_local = PrivateUse1HooksRegistry()->Create("FooHooks", {}).release();
    if (!privateuse1_hooks_local) {
      privateuse1_hooks_local = new FooHooksInterface(FooHooksArgs{});
    }
  });
  return privateuse1_hooks_local;
}

void register_hook() {
  at::RegisterPrivateUse1HooksInterface(get_private_hooks());
}

bool is_register_hook() {
  return privateuse1_hooks_local != nullptr;
}

const at::Generator& default_generator(c10::DeviceIndex device_index) {
  return at::globalContext().defaultGenerator(at::Device(c10::DeviceType::PrivateUse1, device_index));;
}

void fallback_with_undefined_tensor() {
  at::Tensor first = at::empty((2,3)).to(at::DeviceType::PrivateUse1);
  at::Tensor second = at::Tensor();
  at::Tensor step = at::empty({}).fill_(2).to(at::DeviceType::PrivateUse1);
  at::Tensor grad_scale = at::empty({}).fill_(0.00001).to(at::DeviceType::PrivateUse1);
  at::Tensor found_inf = at::empty({}).fill_(1).to(at::DeviceType::PrivateUse1);
  at::TensorList tensors = {first, first};
  at::TensorList undefined_tensors = {first, second};
  at::TensorList steps = {step, step};
  return at::_fused_adamw_(tensors, tensors, tensors, tensors, undefined_tensors,
                           steps, 0.001, 0.9, 0.999, 1e-2, 1e-8, false, false,
                           grad_scale, found_inf);
}

struct CustomAutogradFnReturnsSelf : public torch::autograd::Function<CustomAutogradFnReturnsSelf> {

  static at::Tensor forward(torch::autograd::AutogradContext* ctx, at::Tensor self) {
    return self;
  }

  static torch::autograd::variable_list backward(torch::autograd::AutogradContext* ctx, torch::autograd::variable_list grad_output) {
    return {grad_output[0] * 0.5};
  }
};

struct CustomAutogradFnAliasing : public torch::autograd::Function<CustomAutogradFnAliasing> {

  static at::Tensor forward(torch::autograd::AutogradContext* ctx, at::Tensor self) {
    return self.view_symint(self.sym_sizes());
  }

  static torch::autograd::variable_list backward(torch::autograd::AutogradContext* ctx, torch::autograd::variable_list grad_output) {
    return {grad_output[0] * 0.5};
  }
};

at::Tensor custom_autograd_fn_returns_self(at::Tensor x) {
  return CustomAutogradFnReturnsSelf::apply(x);
}

at::Tensor custom_autograd_fn_aliasing(at::Tensor x) {
  return CustomAutogradFnAliasing::apply(x);
}

// Here, we're exposing a custom device object that corresponds to our custom backend.
// We do this using pybind: exposing an "extension_name.custom_device()" function in python,
// that's implemented in C++.
// The implementation in this file maps directly to the `PrivateUse1` device type.
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("custom_device", &get_custom_device, "get custom device object");
    m.def("custom_add_called", &custom_add_called, "check if our custom add function was called");
    m.def("register_generator_first", &register_generator_first, "register generator for custom device firstly");
    m.def("register_generator_second", &register_generator_second, "register generator for custom device secondly");
    m.def("set_custom_device_index", &set_custom_device_index, "set custom device index");
    m.def("custom_storage_registry", &custom_storage_registry, "set custom storageImpl creat method");
    m.def("custom_storageImpl_called", &custom_storageImpl_called, "check if our custom abs function was called");
    m.def("custom_set_backend_meta", &custom_set_backend_meta, "a fake set tensor BackendMeta function");
    m.def("check_backend_meta", &check_backend_meta, "check if BackendMeta serialization correctly");
    m.def("custom_serialization_registry", &custom_serialization_registry, "register custom serialization function");
    m.def("register_hook", &register_hook, "register_hook for privateuse1");
    m.def("is_register_hook", &is_register_hook, "is_register_hook for privateuse1");
    m.def("default_generator", &default_generator, "default_generator for privateuse1");
    m.def("fallback_with_undefined_tensor", &fallback_with_undefined_tensor, "fallback_with_undefined_tensor for privateuse1");

    // Co-opting this file to more easily test torch.compile'ing of custom autograd functions in C++
    m.def("custom_autograd_fn_returns_self", &custom_autograd_fn_returns_self);
}

TORCH_LIBRARY(_test_funcs, m) {
  m.def("custom_autograd_fn_aliasing(Tensor(a) input)-> Tensor(a)");
}
TORCH_LIBRARY_IMPL(_test_funcs, AutogradCPU, m) {
  m.impl("custom_autograd_fn_aliasing", &custom_autograd_fn_aliasing);
}