File: ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (26 lines) | stat: -rw-r--r-- 631 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from typing import List

import torch
from torch import Tensor


lib = torch.library._scoped_library("python_agnostic", "FRAGMENT")
lib.define("ultra_norm(Tensor[] inputs) -> Tensor")


def ultra_norm(inputs: List[Tensor]) -> Tensor:
    """
    Computes the ultra-L2-norm of a list of tensors via computing the norm of norms.

    Assumes:
    - inputs should not be empty
    - all tensors in inputs should be on the same device and have the same dtype

    Args:
        inputs: list of torch.tensors

    Returns:
        Scalar torch.tensor of shape ()

    """
    return torch.ops.python_agnostic.ultra_norm.default(inputs)