File: create_dummy_torchscript_model.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (36 lines) | stat: -rw-r--r-- 900 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Usage: python create_dummy_model.py <name_of_the_file>
import sys

import torch
from torch import nn


class NeuralNetwork(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28 * 28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits


if __name__ == "__main__":
    jit_module = torch.jit.script(NeuralNetwork())
    torch.jit.save(jit_module, sys.argv[1])
    orig_module = nn.Sequential(
        nn.Linear(28 * 28, 512),
        nn.ReLU(),
        nn.Linear(512, 512),
        nn.ReLU(),
        nn.Linear(512, 10),
    )
    torch.save(orig_module, sys.argv[1] + ".orig")