File: test_infer_schema_annotation.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (206 lines) | stat: -rw-r--r-- 7,061 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Owner(s): ["module: pt2-dispatcher"]
from __future__ import annotations

import typing
from typing import List, Optional, Sequence, Union  # noqa: F401

import torch
from torch import Tensor, types
from torch.testing._internal.common_utils import run_tests, TestCase


mutates_args = {}


class TestInferSchemaWithAnnotation(TestCase):
    def test_tensor(self):
        def foo_op(x: torch.Tensor) -> torch.Tensor:
            return x.clone()

        result = torch.library.infer_schema(foo_op, mutates_args=mutates_args)
        self.assertEqual(result, "(Tensor x) -> Tensor")

        def foo_op_2(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
            return x.clone() + y

        result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
        self.assertEqual(result, "(Tensor x, Tensor y) -> Tensor")

    def test_native_types(self):
        def foo_op(x: int) -> int:
            return x

        result = torch.library.infer_schema(foo_op, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt x) -> SymInt")

        def foo_op_2(x: bool) -> bool:
            return x

        result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
        self.assertEqual(result, "(bool x) -> bool")

        def foo_op_3(x: str) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_3, mutates_args=mutates_args)
        self.assertEqual(result, "(str x) -> SymInt")

        def foo_op_4(x: float) -> float:
            return x

        result = torch.library.infer_schema(foo_op_4, mutates_args=mutates_args)
        self.assertEqual(result, "(float x) -> float")

    def test_torch_types(self):
        def foo_op_1(x: torch.types.Number) -> torch.types.Number:
            return x

        result = torch.library.infer_schema(foo_op_1, mutates_args=mutates_args)
        self.assertEqual(result, "(Scalar x) -> Scalar")

        def foo_op_2(x: torch.dtype) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
        self.assertEqual(result, "(ScalarType x) -> SymInt")

        def foo_op_3(x: torch.device) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_3, mutates_args=mutates_args)
        self.assertEqual(result, "(Device x) -> SymInt")

    def test_type_variants(self):
        def foo_op_1(x: typing.Optional[int]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_1, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt? x) -> SymInt")

        def foo_op_2(x: typing.Sequence[int]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[] x) -> SymInt")

        def foo_op_3(x: typing.List[int]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_3, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[] x) -> SymInt")

        def foo_op_4(x: typing.Optional[typing.Sequence[int]]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_4, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[]? x) -> SymInt")

        def foo_op_5(x: typing.Optional[typing.List[int]]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_5, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[]? x) -> SymInt")

        def foo_op_6(x: typing.Union[int, float, bool]) -> types.Number:
            return x

        result = torch.library.infer_schema(foo_op_6, mutates_args=mutates_args)
        self.assertEqual(result, "(Scalar x) -> Scalar")

        def foo_op_7(x: typing.Union[int, bool, float]) -> types.Number:
            return x

        result = torch.library.infer_schema(foo_op_7, mutates_args=mutates_args)
        self.assertEqual(result, "(Scalar x) -> Scalar")

    def test_no_library_prefix(self):
        def foo_op(x: Tensor) -> Tensor:
            return x.clone()

        result = torch.library.infer_schema(foo_op, mutates_args=mutates_args)
        self.assertEqual(result, "(Tensor x) -> Tensor")

        def foo_op_2(x: Tensor) -> torch.Tensor:
            return x.clone()

        result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
        self.assertEqual(result, "(Tensor x) -> Tensor")

        def foo_op_3(x: torch.Tensor) -> Tensor:
            return x.clone()

        result = torch.library.infer_schema(foo_op_3, mutates_args=mutates_args)
        self.assertEqual(result, "(Tensor x) -> Tensor")

        def foo_op_4(x: List[int]) -> types.Number:
            return x[0]

        result = torch.library.infer_schema(foo_op_4, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[] x) -> Scalar")

        def foo_op_5(x: Optional[int]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_5, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt? x) -> SymInt")

        def foo_op_6(x: Sequence[int]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_6, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[] x) -> SymInt")

        def foo_op_7(x: List[int]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_7, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[] x) -> SymInt")

        def foo_op_8(x: Optional[Sequence[int]]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_8, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[]? x) -> SymInt")

        def foo_op_9(x: Optional[List[int]]) -> int:
            return 1

        result = torch.library.infer_schema(foo_op_9, mutates_args=mutates_args)
        self.assertEqual(result, "(SymInt[]? x) -> SymInt")

        def foo_op_10(x: Union[int, float, bool]) -> types.Number:
            return x

        result = torch.library.infer_schema(foo_op_10, mutates_args=mutates_args)
        self.assertEqual(result, "(Scalar x) -> Scalar")

        def foo_op_11(x: Union[int, bool, float]) -> types.Number:
            return x

        result = torch.library.infer_schema(foo_op_11, mutates_args=mutates_args)
        self.assertEqual(result, "(Scalar x) -> Scalar")

    def test_unsupported_annotation(self):
        with self.assertRaisesRegex(
            ValueError,
            r"Unsupported type annotation D. It is not a type.",
        ):

            def foo_op(x: D) -> Tensor:  # noqa: F821
                return torch.Tensor(x)

            torch.library.infer_schema(foo_op, mutates_args=mutates_args)

        with self.assertRaisesRegex(
            ValueError,
            r"Unsupported type annotation E. It is not a type.",
        ):

            def foo_op_2(x: Tensor) -> E:  # noqa: F821
                return x

            torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)


if __name__ == "__main__":
    run_tests()