File: test_fully_shard_autograd.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (330 lines) | stat: -rw-r--r-- 13,439 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Owner(s): ["oncall: distributed"]

import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union

import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
    check_sharded_parity,
    DoubleLinear,
    FSDPTest,
    FSDPTestMultiThread,
    MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    ModelArgs,
    Transformer,
)


class TestFullyShardAutograd(FSDPTest):
    @property
    def world_size(self) -> int:
        return min(4, torch.cuda.device_count())

    def _reduce_1d_partial_grads(
        self, module: nn.Module, group: Optional[dist.ProcessGroup] = None
    ) -> None:
        group = group or dist.distributed_c10d._get_default_group()
        for param in module.parameters():
            if param.grad is not None:
                param.grad.div_(group.size())

    @skip_if_lt_x_gpu(2)
    def test_unused_forward_output(self):
        """
        Tests that gradients propagate when running a backward where some
        forward output is not used to compute the loss, motivated by:
        https://github.com/pytorch/pytorch/pull/83195
        """
        self.run_subtests(
            {"reshard_after_forward": [True, False, 2]},
            self._test_unused_forward_output,
        )

    def _test_unused_forward_output(self, reshard_after_forward: Union[bool, int]):
        torch.manual_seed(42)
        local_batch_size = 2
        global_batch_size, dim = (self.world_size * local_batch_size, 24)
        model = DoubleLinear(dim=dim, use_second_linear=True)
        ref_model = copy.deepcopy(model).cuda()
        fully_shard(model.lin1, reshard_after_forward=reshard_after_forward)
        fully_shard(model, reshard_after_forward=reshard_after_forward)
        ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
        optim = torch.optim.Adam(model.parameters(), lr=1e-2)

        torch.manual_seed(1)  # same on all ranks
        for iter_idx in range(10):
            # Use all forward outputs in the loss/backward for the first half
            # of the iterations and only the 1st forward output for the rest
            global_inp = torch.rand((global_batch_size, dim), device="cuda")
            local_inp = global_inp[
                self.rank * local_batch_size : (self.rank + 1) * local_batch_size
            ].detach()
            out1, out2 = model(local_inp)
            loss = (out1 * out2).sum() if iter_idx < 3 else out1.sum()
            loss.backward()
            optim.step()
            ref_out1, ref_out2 = ref_model(global_inp)
            ref_loss = (ref_out1 * ref_out2).sum() if iter_idx < 3 else ref_out1.sum()
            ref_loss.backward()
            self._reduce_1d_partial_grads(ref_model)
            ref_optim.step()
            dist.all_reduce(loss)  # partial -> replicated
            self.assertEqual(loss, ref_loss)
            optim.zero_grad(set_to_none=(iter_idx % 2))
            ref_optim.zero_grad(set_to_none=(iter_idx % 2))
            check_sharded_parity(self, ref_model, model)

    @skip_if_lt_x_gpu(2)
    def test_unused_forward_module(self):
        """
        Tests that gradients propagate when running a backward where some
        forward module is not used to compute the loss, motivated by:
        https://github.com/pytorch/pytorch/pull/80245
        """
        self.run_subtests(
            {"reshard_after_forward": [True, False, 2]},
            self._test_unused_forward_module,
        )

    def _test_unused_forward_module(self, reshard_after_forward: Union[bool, int]):
        torch.manual_seed(42)
        local_batch_size, dim = (2, 24)
        global_batch_size = self.world_size * local_batch_size
        model = DoubleLinear(dim=dim, use_second_linear=False)
        ref_model = copy.deepcopy(model).cuda()
        fully_shard(model.lin1, reshard_after_forward=reshard_after_forward)
        fully_shard(model.lin2, reshard_after_forward=reshard_after_forward)
        fully_shard(model, reshard_after_forward=reshard_after_forward)
        ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
        optim = torch.optim.Adam(model.parameters(), lr=1e-2)

        torch.manual_seed(1)  # same on all ranks
        for iter_idx in range(10):
            global_inp = torch.rand((global_batch_size, dim), device="cuda")
            local_inp = global_inp[
                self.rank * local_batch_size : (self.rank + 1) * local_batch_size
            ].detach()
            losses: List[torch.Tensor] = []
            for _model, inp in ((ref_model, global_inp), (model, local_inp)):
                losses.append(_model(inp).sum())
                losses[-1].backward()
            self._reduce_1d_partial_grads(ref_model)
            dist.all_reduce(losses[1])  # partial -> replicated
            self.assertEqual(losses[0], losses[1])
            check_sharded_parity(self, ref_model, model)
            for _optim in (optim, ref_optim):
                _optim.step()
                _optim.zero_grad(set_to_none=(iter_idx % 2))

    @skip_if_lt_x_gpu(2)
    def test_nontensor_activations(self):
        """
        Tests that gradients propagate when running forward with nontensor
        data structures wrapping the activations. This is mainly to test the
        hook registration.
        """
        self.run_subtests(
            {"container_type": [list, collections.namedtuple, tuple, dict]},
            self._test_nontensor_activations,
        )

    def _test_nontensor_activations(self, container_type: Type):
        class Module(nn.Module):
            def __init__(self, dim: int):
                super().__init__()
                self.lin1 = nn.Linear(dim, dim)
                self.lin2 = nn.Linear(dim, dim)
                self.relu = nn.ReLU()

            def forward(self, inp: Any):
                # Assume that the "0th" element of `inp` is a tensor, run some
                # forward computation on it, and pack it back into the same
                # data structure type as `inp`
                if isinstance(inp, list):
                    return [self._forward(inp[0])]
                elif _is_namedtuple(inp):
                    return type(inp)(*([self._forward(inp[0])] + list(inp[1:])))
                elif isinstance(inp, tuple):
                    return (self._forward(inp[0]),)
                elif isinstance(inp, dict):
                    return {"x": self._forward(inp["x"])}
                else:
                    raise NotImplementedError(
                        f"Unsupported input type {type(inp)}: {inp}"
                    )

            def _forward(self, x: torch.Tensor) -> torch.Tensor:
                return self.relu(self.lin2(self.relu(self.lin1(x))))

        class ToContainerType(nn.Module):
            def __init__(self, container_type: Type):
                super().__init__()
                self.container_type = container_type

            def forward(self, x: torch.Tensor):
                if self.container_type is list:
                    return [x]
                elif self.container_type is collections.namedtuple:
                    nt = collections.namedtuple("NT", "x y")
                    return nt(x, torch.ones_like(x))
                elif self.container_type is tuple:
                    return (x,)
                elif self.container_type is dict:
                    return {"x": x}
                else:
                    raise NotImplementedError(
                        f"Unsupported container type: {self.container_type}"
                    )

        class FromContainerType(nn.Module):
            def __init__(self, container_type: Type):
                super().__init__()
                self.container_type = container_type

            def forward(self, x: torch.Tensor):
                if self.container_type in (list, collections.namedtuple, tuple):
                    return x[0]
                elif self.container_type is dict:
                    return x["x"]
                else:
                    raise NotImplementedError(
                        f"Unsupported container type: {self.container_type}"
                    )

        torch.manual_seed(42)
        local_batch_size, dim = (2, 24)
        global_batch_size = self.world_size * local_batch_size
        model = nn.Sequential(
            ToContainerType(container_type),
            Module(dim),
            Module(dim),
            Module(dim),
            FromContainerType(container_type),
        )
        ref_model = copy.deepcopy(model).cuda()
        for module in model:
            fully_shard(module)
        fully_shard(model)
        ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
        optim = torch.optim.Adam(model.parameters(), lr=1e-2)

        torch.manual_seed(1)  # same on all ranks
        for iter_idx in range(10):
            global_inp = torch.rand((global_batch_size, dim), device="cuda")
            local_inp = global_inp[
                self.rank * local_batch_size : (self.rank + 1) * local_batch_size
            ].detach()
            losses: List[torch.Tensor] = []
            for _model, inp in ((ref_model, global_inp), (model, local_inp)):
                losses.append(_model(inp).sum())
                losses[-1].backward()
            self._reduce_1d_partial_grads(ref_model)
            dist.all_reduce(losses[1])  # partial -> replicated
            self.assertEqual(losses[0], losses[1])
            check_sharded_parity(self, ref_model, model)
            for _optim in (optim, ref_optim):
                _optim.step()
                _optim.zero_grad(set_to_none=(iter_idx % 2))


class TestFullyShardPostAccGradHookMultiThread(FSDPTestMultiThread):
    @property
    def world_size(self) -> int:
        return 2

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_post_acc_grad_hook_runs(self):
        param_name_to_hook_count = collections.defaultdict(int)

        def hook(param_name: str, param: torch.Tensor) -> None:
            nonlocal param_name_to_hook_count
            param_name_to_hook_count[param_name] += 1

        model = MLP(8)
        for module in (model.in_proj, model.out_proj, model):
            fully_shard(module)
        for param_name, param in model.named_parameters():
            param_hook = functools.partial(hook, param_name)
            param.register_post_accumulate_grad_hook(param_hook)

        inp = torch.randn((2, 8), device="cuda")
        model(inp).sum().backward()
        param_names = {param_name for param_name, _ in model.named_parameters()}
        self.assertEqual(param_names, set(param_name_to_hook_count.keys()))
        for param_name, count in param_name_to_hook_count.items():
            self.assertEqual(count, 1)


class TestFullyShardPostAccGradHookMultiProcess(FSDPTest):
    @property
    def world_size(self) -> int:
        return min(torch.cuda.device_count(), 2)

    @skip_if_lt_x_gpu(2)
    def test_post_acc_grad_hook_optim_parity(self):
        """
        Tests parity of running the optimizer via the post-accumulate-grad
        hook vs. normally.
        """
        torch.manual_seed(42)
        model_args = ModelArgs(dropout_p=0.0)
        model = Transformer(model_args)

        ref_model = copy.deepcopy(model).cuda()
        for module in itertools.chain(ref_model.layers, [ref_model]):
            fully_shard(module)
        optim_kwargs = {"lr": 1e-2, "foreach": False}
        ref_optim = torch.optim.AdamW(ref_model.parameters(), **optim_kwargs)
        lr_scheduler_kwargs = {"step_size": 5}
        ref_lr_scheduler = torch.optim.lr_scheduler.StepLR(
            ref_optim, **lr_scheduler_kwargs
        )

        for module in itertools.chain(model.layers, [model]):
            fully_shard(module)
        param_to_optim = {}
        param_to_lr_scheduler = {}
        for param in model.parameters():
            param_to_optim[param] = torch.optim.AdamW([param], **optim_kwargs)
            param_to_lr_scheduler[param] = torch.optim.lr_scheduler.StepLR(
                param_to_optim[param], **lr_scheduler_kwargs
            )

        def optim_hook(param: nn.Parameter) -> None:
            param_to_optim[param].step()
            param_to_optim[param].zero_grad()
            param_to_lr_scheduler[param].step()

        for param in model.parameters():
            param.register_post_accumulate_grad_hook(optim_hook)

        torch.manual_seed(42 + self.rank)
        inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
        for _ in range(10):
            ref_loss = ref_model(inp).sum()
            ref_loss.backward()
            ref_optim.step()
            ref_optim.zero_grad()
            ref_lr_scheduler.step()
            loss = model(inp).sum()
            loss.backward()
            self.assertTrue(torch.equal(ref_loss, loss))
            for ref_param, param in zip(ref_model.parameters(), model.parameters()):
                self.assertTrue(torch.equal(ref_param, param))


if __name__ == "__main__":
    run_tests()