File: test_fully_shard_comm.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1165 lines) | stat: -rw-r--r-- 50,144 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
# Owner(s): ["oncall: distributed"]

import copy
import functools
import itertools
import unittest
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.fsdp import (
    FSDPModule,
    fully_shard,
    MixedPrecisionPolicy,
    OffloadPolicy,
)
from torch.distributed.fsdp._fully_shard._fsdp_collectives import (
    _div_if_needed,
    _get_gradient_divide_factors,
    foreach_all_gather,
    foreach_all_gather_copy_out,
    foreach_reduce,
)
from torch.distributed.fsdp._fully_shard._fsdp_common import FSDPMeshInfo, TrainingState
from torch.distributed.fsdp._fully_shard._fsdp_init import (
    _get_post_forward_mesh_info,
    _init_default_fully_shard_mesh,
)
from torch.distributed.fsdp._fully_shard._fsdp_param import ShardedState
from torch.distributed.fsdp._fully_shard._fsdp_param_group import FSDPParamGroup
from torch.distributed.tensor import DTensor
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.experimental import implicit_replication
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
    check_sharded_parity,
    DoubleLinear,
    FSDPTest,
    FSDPTestMultiThread,
    MLP,
    patch_post_backward,
    patch_reshard,
    patch_unshard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    ModelArgs,
    Transformer,
    TransformerBlock,
)


c10d_ops = torch.ops.c10d

# For recording FSDP events like unshard or post-backward
EventType = Tuple[str, str, TrainingState]


class TestFullyShardCollectiveOps(FSDPTestMultiThread):
    @property
    def world_size(self) -> int:
        return 128

    @property
    def device(self) -> torch.device:
        return torch.device("cuda:0")

    def _get_param_sizes(self) -> List[torch.Size]:
        # For world size 128, the fp32 all-gather and reduce-scatter testing
        # requires ~0.22 GB
        return [
            torch.Size([17, 257]),
            torch.Size([17]),
            torch.Size([64, 312]),
            torch.Size([64]),
            torch.Size([64, 64]),
            torch.Size([512, 64]),
            torch.Size([256]),
            torch.Size([64, 297]),
        ]

    def _init_params(self, param_sizes: List[torch.Size]) -> List[nn.Parameter]:
        torch.manual_seed(42)
        orig_params = [
            nn.Parameter(torch.randn(size, device=self.device)) for size in param_sizes
        ]
        # Since seed is per process, not per thread, we broadcast to ensure the
        # same original parameters across ranks
        for orig_param in orig_params:
            dist.broadcast(orig_param, src=0)
        return orig_params

    def _init_fsdp_param_group(
        self, params: List[nn.Parameter], reshard_after_forward: Union[bool, int]
    ):
        module = nn.ParameterList([param.detach().clone() for param in params])
        mesh_info = FSDPMeshInfo(_init_default_fully_shard_mesh(), shard_mesh_dim=0)
        post_forward_mesh_info = _get_post_forward_mesh_info(
            reshard_after_forward, mesh_info
        )
        fsdp_param_group = FSDPParamGroup(
            list(module.parameters()),
            (module,),
            mesh_info,
            post_forward_mesh_info,
            self.device,
            None,  # shard_placement_fn
            MixedPrecisionPolicy(),
            OffloadPolicy(),
        )
        fsdp_param_group.lazy_init()
        return fsdp_param_group

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_all_gather_fp32(self):
        param_sizes = self._get_param_sizes()
        default_stream = torch.cuda.current_stream()
        stream1, stream2 = torch.cuda.Stream(), torch.cuda.Stream()
        for async_op, streams, reshard_after_forward in itertools.product(
            (False, True),
            ((default_stream, default_stream), (stream1, stream2)),
            (True, 8),
        ):
            all_gather_copy_in_stream, all_gather_stream = streams
            # Save test time by only testing reshard after forward as an int
            # for non-async and non-default streams (like in pre-backward)
            if type(reshard_after_forward) is int and (
                async_op or all_gather_stream is default_stream
            ):
                continue
            self._test_all_gather(
                param_sizes,
                reshard_after_forward=reshard_after_forward,
                async_op=async_op,
                all_gather_copy_in_stream=all_gather_copy_in_stream,
                all_gather_stream=all_gather_stream,
            )

    def _test_all_gather(
        self,
        param_sizes: List[torch.Size],
        reshard_after_forward: Union[bool, int],
        async_op: bool,
        all_gather_copy_in_stream: torch.cuda.Stream,
        all_gather_stream: torch.cuda.Stream,
    ):
        def all_gather(fsdp_param_group: FSDPParamGroup, group: dist.ProcessGroup):
            all_gather_result = foreach_all_gather(
                fsdp_param_group.fsdp_params,
                group,
                async_op=async_op,
                all_gather_copy_in_stream=all_gather_copy_in_stream,
                all_gather_stream=all_gather_stream,
                device=self.device,
            )
            foreach_all_gather_copy_out(all_gather_result, fsdp_params, group)
            # Transition to unsharded state to register unsharded parameters
            for fsdp_param in fsdp_param_group.fsdp_params:
                fsdp_param.init_unsharded_param()
            fsdp_param_group._to_unsharded()

        def check_all_gathered_params(
            orig_params: List[nn.Parameter], module: nn.Module
        ):
            for orig_param, param in zip(orig_params, module.parameters()):
                self.assertIsInstance(param, torch.Tensor)
                self.assertIsInstance(param, nn.Parameter)
                self.assertEqual(param, orig_param.to(param.dtype))

        # Set up the reference parameters and construct the FSDP group
        orig_params = self._init_params(param_sizes)
        fsdp_param_group = self._init_fsdp_param_group(
            orig_params, reshard_after_forward
        )
        fsdp_params = fsdp_param_group.fsdp_params
        module = fsdp_param_group.modules[0]

        # Sanity check that the parameter sharding is as expected
        for orig_param, param in zip(orig_params, module.parameters()):
            self.assertTrue(isinstance(param, DTensor))
            self.assertEqual(param.full_tensor(), orig_param)

        # Run the foreach all-gather (including copy-in and copy-out)
        all_gather(fsdp_param_group, fsdp_param_group.mesh_info.shard_process_group)

        # Check all-gather correctness
        check_all_gathered_params(orig_params, module)

        # For reshard after after forward as an int, further test emulating the
        # pre-backward all-gather
        if type(reshard_after_forward) is not int:
            return
        fsdp_param_group._to_sharded_post_forward()
        all_gather(
            fsdp_param_group,
            fsdp_param_group.post_forward_mesh_info.shard_process_group,
        )
        check_all_gathered_params(orig_params, module)

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_reduce_scatter_fp32(self):
        param_sizes = self._get_param_sizes()
        default_stream = torch.cuda.current_stream()
        stream = torch.cuda.Stream()
        for reduce_scatter_stream in (default_stream, stream):
            self._test_reduce_scatter(
                param_sizes,
                reduce_scatter_stream=reduce_scatter_stream,
                reduce_scatter_dtype=torch.float32,
            )

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_reduce_scatter_fp16(self):
        param_sizes = self._get_param_sizes()
        default_stream = torch.cuda.current_stream()
        stream = torch.cuda.Stream()
        for reduce_scatter_stream in (default_stream, stream):
            self._test_reduce_scatter(
                param_sizes,
                reduce_scatter_stream=reduce_scatter_stream,
                reduce_scatter_dtype=torch.float16,
            )

    def _test_reduce_scatter(
        self,
        param_sizes: List[torch.Size],
        reduce_scatter_stream: torch.cuda.Stream,
        reduce_scatter_dtype: torch.dtype,
    ):
        # Set up the reference parameters and construct the FSDP group
        orig_params = self._init_params(param_sizes)
        fsdp_param_group = self._init_fsdp_param_group(orig_params, True)
        fsdp_params = fsdp_param_group.fsdp_params
        fsdp_param_group.comm_ctx.lazy_init(self.device)

        # Run one unshard to initialize metadata
        fsdp_param_group.unshard()
        fsdp_param_group.wait_for_unshard()
        fsdp_param_group.reshard()

        # Run the foreach reduce-scatter (including copy-in and view-out)
        torch.manual_seed(42)
        unsharded_grads = [torch.ones_like(param) * self.rank for param in orig_params]
        group = fsdp_param_group.mesh_info.shard_process_group
        self.assertEqual(group.size(), self.world_size)
        all_reduce_stream = torch.cuda.Stream()
        (
            reduce_scatter_input,
            reduce_scatter_event,
            post_reduce_event,
            _,
            _,
            _,
        ) = foreach_reduce(
            fsdp_params,
            unsharded_grads,
            group,
            reduce_scatter_stream,
            orig_dtype=orig_params[0].dtype,
            reduce_dtype=reduce_scatter_dtype,
            device=self.device,
            reduce_scatter_reduce_op=None,
            all_reduce_group=None,
            all_reduce_stream=all_reduce_stream,
            all_reduce_grads=True,
            partial_reduce_output=None,
        )
        torch.cuda.current_stream().wait_event(post_reduce_event)

        # Check reduce-scatter correctness
        predivide_factor, postdivide_factor = _get_gradient_divide_factors(
            group, None, reduce_scatter_dtype
        )
        reduced_grads = [grad.detach().clone() for grad in unsharded_grads]
        for grad in reduced_grads:
            _div_if_needed(grad, predivide_factor)
            dist.all_reduce(
                grad,
                group=group,
                op=dist.ReduceOp.AVG if predivide_factor is None else dist.ReduceOp.SUM,
            )
            _div_if_needed(grad, postdivide_factor)
        for fsdp_param, reduced_grad in zip(fsdp_params, reduced_grads):
            sharded_grad = fsdp_param.sharded_param.grad
            self.assertIsInstance(sharded_grad, DTensor)
            self.assertEqual(sharded_grad.full_tensor(), reduced_grad)


class TestFullyShardCommunication(FSDPTest):
    @property
    def world_size(self) -> int:
        return min(4, torch.cuda.device_count())

    @skip_if_lt_x_gpu(2)
    def test_fully_shard_communication_count(self):
        """
        Tests that FSDP issues the expected number of all-gathers and
        reduce-scatters during forward and backward.
        """
        self.run_subtests(
            {"reshard_after_forward": [True, False, 2]},
            self._test_communication_count,
        )

    def _test_communication_count(
        self,
        reshard_after_forward: Union[bool, int],
    ):
        torch.manual_seed(42)
        model_args = ModelArgs()
        model = Transformer(model_args)
        fully_shard_fn = functools.partial(
            fully_shard, reshard_after_forward=reshard_after_forward
        )
        num_blocks = 0
        for module in model.modules():
            if isinstance(module, TransformerBlock):
                fully_shard_fn(module)
                num_blocks += 1
        fully_shard_fn(model)
        # We construct `num_blocks` plus 1 FSDP states/communication groups

        torch.manual_seed(42 + self.rank)
        inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
        with CommDebugMode() as fwd_comm_mode:
            loss = model(inp)
        fwd_comm_counts = fwd_comm_mode.get_comm_counts()
        self.assertEqual(len(fwd_comm_counts), 1)
        self.assertEqual(fwd_comm_counts[c10d_ops._allgather_base_], num_blocks + 1)
        with CommDebugMode() as bwd_comm_mode:
            loss.sum().backward()
        bwd_comm_counts = bwd_comm_mode.get_comm_counts()
        if reshard_after_forward is False:
            self.assertEqual(len(bwd_comm_counts), 1)
        else:
            # The root always does not reshard after forward
            self.assertEqual(len(bwd_comm_counts), 2)
            self.assertEqual(bwd_comm_counts[c10d_ops._allgather_base_], num_blocks)
        self.assertEqual(
            bwd_comm_counts[c10d_ops._reduce_scatter_base_], num_blocks + 1
        )

    @skip_if_lt_x_gpu(2)
    def test_manual_reshard_with_reshard_after_forward_false(self):
        """
        Tests that we can manually call ``reshard`` on FSDP modules that were
        initialized with ``reshard_after_forward=False`` and still run unshard.
        """
        torch.manual_seed(42)
        model_args = ModelArgs()
        model = Transformer(model_args)
        for module in model.modules():
            if isinstance(module, TransformerBlock):
                fully_shard(module, reshard_after_forward=False)
        model = fully_shard(model, reshard_after_forward=False)
        num_fsdp_modules = sum(
            isinstance(module, FSDPModule) for module in model.modules()
        )

        torch.manual_seed(42 + self.rank)
        inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
        with CommDebugMode() as fwd_comm_mode:
            loss = model(inp)
        fwd_comm_counts = fwd_comm_mode.get_comm_counts()
        self.assertEqual(len(fwd_comm_counts), 1)
        self.assertEqual(fwd_comm_counts[c10d_ops._allgather_base_], num_fsdp_modules)

        for module in model.modules():
            if isinstance(module, FSDPModule):
                module.reshard()

        with CommDebugMode() as bwd_comm_mode:
            loss.sum().backward()
        bwd_comm_counts = bwd_comm_mode.get_comm_counts()
        self.assertEqual(len(bwd_comm_counts), 2)
        self.assertEqual(bwd_comm_counts[c10d_ops._allgather_base_], num_fsdp_modules)
        self.assertEqual(
            bwd_comm_counts[c10d_ops._reduce_scatter_base_], num_fsdp_modules
        )

    @skip_if_lt_x_gpu(2)
    def test_set_reduce_scatter_divide_factor(self):
        self.run_subtests(
            {"divide_factor": [self.world_size * 2, self.world_size]},
            self._test_set_reduce_scatter_divide_factor,
        )

    def _test_set_reduce_scatter_divide_factor(self, divide_factor: float):
        torch.manual_seed(42)
        model_args = ModelArgs(dropout_p=0.0, weight_tying=False)
        model = Transformer(model_args)
        ref_model = copy.deepcopy(model).cuda()
        ref_optim = torch.optim.AdamW(ref_model.parameters(), lr=1e-2)
        for module in model.modules():
            if isinstance(module, TransformerBlock):
                fully_shard(module, reshard_after_forward=False)
        model = fully_shard(model, reshard_after_forward=False)
        optim = torch.optim.AdamW(model.parameters(), lr=1e-2)
        model.set_reduce_scatter_divide_factor(divide_factor)

        torch.manual_seed(42 + self.rank)
        inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")

        for iter_idx in range(10):
            ref_loss = ref_model(inp).sum()
            ref_loss.backward()
            for param in ref_model.parameters():
                param.grad.mul_(1.0 / divide_factor)
                dist.all_reduce(param.grad)
            loss = model(inp).sum()
            loss.backward()
            ref_optim.step()
            optim.step()
            ref_optim.zero_grad()
            optim.zero_grad()
            self.assertEqual(ref_loss, loss)
            check_sharded_parity(self, ref_model, model)


class TestFullyShardPrefetch(FSDPTest):
    @property
    def world_size(self) -> int:
        return min(4, torch.cuda.device_count())

    @skip_if_lt_x_gpu(2)
    def test_fully_shard_backward_prefetch(self):
        # Activation checkpointing should not affect the expected FSDP events
        self.run_subtests(
            {
                "reshard_after_forward": [True, False, 2],
                "checkpoint_impl": [None, "utils", "composable"],
            },
            self._test_backward_prefetch_forward_backward,
        )
        self.run_subtests(
            {
                "reshard_after_forward": [True, False, 2],
                "checkpoint_impl": [None, "utils", "composable"],
            },
            self._test_backward_prefetch_multi_forward,
        )
        self._test_backward_prefetch_unused_in_backward(True)

    def _test_backward_prefetch_forward_backward(
        self, reshard_after_forward: Union[bool, int], checkpoint_impl: Optional[str]
    ):
        n_layers = 3
        model, optim, inp = self._init_transformer(
            n_layers, reshard_after_forward, checkpoint_impl
        )
        events: List[EventType] = []
        unshard_with_record = self._get_unshard_with_record(
            FSDPParamGroup.unshard, events
        )
        post_backward_with_record = self._get_post_backward_with_record(
            FSDPParamGroup.post_backward, events
        )
        # Check the order for normal 1 forward, 1 backward, 1 optimizer step
        with patch_unshard(unshard_with_record), patch_post_backward(
            post_backward_with_record
        ):
            for iter_idx in range(3):
                loss = model(inp)
                expected_events = [
                    ("unshard", "", TrainingState.FORWARD),  # root
                    ("unshard", "layers.0", TrainingState.FORWARD),
                    ("unshard", "layers.1", TrainingState.FORWARD),
                    ("unshard", "layers.2", TrainingState.FORWARD),
                ]
                self.assertEqual(events, expected_events)
                events.clear()
                loss.sum().backward()
                expected_events = [
                    # Root does not reshard after forward so there is no
                    # unshard event for it in backward
                    ("unshard", "layers.2", TrainingState.PRE_BACKWARD),
                    # Explicit backward prefetching moves the unshards early
                    # by one module (note how swapping each unshard down one
                    # event would give the natural event order)
                    ("unshard", "layers.1", TrainingState.PRE_BACKWARD),
                    ("post_backward", "layers.2", TrainingState.POST_BACKWARD),
                    ("unshard", "layers.0", TrainingState.PRE_BACKWARD),
                    ("post_backward", "layers.1", TrainingState.POST_BACKWARD),
                    ("post_backward", "layers.0", TrainingState.POST_BACKWARD),
                    ("post_backward", "", TrainingState.POST_BACKWARD),
                ]
                if reshard_after_forward is False:
                    # No reshard after forward means no backward unshards
                    expected_events = [e for e in expected_events if e[0] != "unshard"]
                self.assertEqual(events, expected_events)
                events.clear()
                optim.step()
                optim.zero_grad(set_to_none=(iter_idx % 2 == 0))

    def _test_backward_prefetch_multi_forward(
        self, reshard_after_forward: Union[bool, int], checkpoint_impl: Optional[str]
    ):
        n_layers = 3
        model, optim, inp = self._init_transformer(
            n_layers, reshard_after_forward, checkpoint_impl
        )
        events: List[EventType] = []
        unshard_with_record = self._get_unshard_with_record(
            FSDPParamGroup.unshard, events
        )
        post_backward_with_record = self._get_post_backward_with_record(
            FSDPParamGroup.post_backward, events
        )
        # Check the order for multiple forwards before 1 backward
        with patch_unshard(unshard_with_record), patch_post_backward(
            post_backward_with_record
        ):
            loss1 = model(inp)
            loss2 = model(inp)
            expected_events = [
                ("unshard", "", TrainingState.FORWARD),  # root
                ("unshard", "layers.0", TrainingState.FORWARD),
                ("unshard", "layers.1", TrainingState.FORWARD),
                ("unshard", "layers.2", TrainingState.FORWARD),
                # Root does not reshard after forward so there is not another
                # unshard event for it
                ("unshard", "layers.0", TrainingState.FORWARD),
                ("unshard", "layers.1", TrainingState.FORWARD),
                ("unshard", "layers.2", TrainingState.FORWARD),
            ]
            if reshard_after_forward is False:
                # No reshard after forward means no second set of unshards
                expected_events = expected_events[:-3]
            self.assertEqual(events, expected_events)
            events.clear()
            (loss1 + loss2).sum().backward()
            expected_events = [
                # Same as the single forward/backward case except the root's
                # post-backward does not run until the end of backward in the
                # final callback (since the input not requiring gradient means
                # that we do not have a tensor on which to hook for
                # post-backward)
                ("unshard", "layers.2", TrainingState.PRE_BACKWARD),
                ("unshard", "layers.1", TrainingState.PRE_BACKWARD),
                ("post_backward", "layers.2", TrainingState.POST_BACKWARD),
                ("unshard", "layers.0", TrainingState.PRE_BACKWARD),
                ("post_backward", "layers.1", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.0", TrainingState.POST_BACKWARD),
            ]
            if reshard_after_forward is False:
                # No reshard after forward means no backward unshards
                expected_events = [e for e in expected_events if e[0] != "unshard"]
                # However, the post-backward reshards, so the second set of
                # unshards will run as real ops
            expected_events += [
                # Repeat the same pattern except with the root's post-backward
                # at the end since the final callback runs
                ("unshard", "layers.2", TrainingState.PRE_BACKWARD),
                ("unshard", "layers.1", TrainingState.PRE_BACKWARD),
                ("post_backward", "layers.2", TrainingState.POST_BACKWARD),
                ("unshard", "layers.0", TrainingState.PRE_BACKWARD),
                ("post_backward", "layers.1", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.0", TrainingState.POST_BACKWARD),
                ("post_backward", "", TrainingState.POST_BACKWARD),
            ]
            self.assertEqual(events, expected_events)
            events.clear()

    def _test_backward_prefetch_unused_in_backward(
        self, reshard_after_forward: Union[bool, int]
    ):
        """
        Test a model with a linear module then a split into two linear modules,
        where we run backward through one path first before the other, meaning
        that (1) only one linear of the two split is used per backward and (2)
        the initial shared linear is used in both backwards.
        """
        dim = 8
        model = nn.Sequential(nn.Linear(dim, dim), DoubleLinear(dim))
        fully_shard(model[0], reshard_after_forward=reshard_after_forward)
        fully_shard(model[1].lin1, reshard_after_forward=reshard_after_forward)
        fully_shard(model[1].lin2, reshard_after_forward=reshard_after_forward)
        fully_shard(model, reshard_after_forward=reshard_after_forward)
        inp = torch.randn((4, dim), device="cuda")
        events: List[EventType] = []
        unshard_with_record = self._get_unshard_with_record(
            FSDPParamGroup.unshard, events
        )
        post_backward_with_record = self._get_post_backward_with_record(
            FSDPParamGroup.post_backward, events
        )
        with patch_unshard(unshard_with_record), patch_post_backward(
            post_backward_with_record
        ):
            loss1, loss2 = model(inp)
            expected_events = [
                # Root has no parameters, so it does not have an unshard
                ("unshard", "0", TrainingState.FORWARD),
                ("unshard", "1.lin1", TrainingState.FORWARD),
                ("unshard", "1.lin2", TrainingState.FORWARD),
            ]
            self.assertEqual(events, expected_events)
            events.clear()

            model.set_is_last_backward(False)
            loss2.sum().backward(retain_graph=True)
            expected_events = [
                ("unshard", "1.lin2", TrainingState.PRE_BACKWARD),
                # NOTE: This `1.lin1` unshard is a mistargeted prefetch.
                ("unshard", "1.lin1", TrainingState.PRE_BACKWARD),
                ("post_backward", "1.lin2", TrainingState.POST_BACKWARD),
                ("unshard", "0", TrainingState.PRE_BACKWARD),
                ("post_backward", "0", TrainingState.POST_BACKWARD),
            ]
            self.assertEqual(events, expected_events)
            events.clear()

            model.set_is_last_backward(True)
            loss1.sum().backward()
            expected_events = [
                # NOTE: `1.lin1` is already unsharded from the mistargeted
                # prefetch in the first backward.
                # Prefetch `0`
                ("unshard", "0", TrainingState.PRE_BACKWARD),
                ("post_backward", "1.lin1", TrainingState.POST_BACKWARD),
                ("post_backward", "0", TrainingState.POST_BACKWARD),
            ]
            self.assertEqual(events, expected_events)
            events.clear()

    @skip_if_lt_x_gpu(2)
    def test_set_modules_to_forward_prefetch(self):
        n_layers = 4
        reshard_after_forward = True
        checkpoint_impl = "utils"
        model, _, inp = self._init_transformer(
            n_layers, reshard_after_forward, checkpoint_impl
        )

        def set_forward_prefetch(model: Transformer, num_to_prefetch: int) -> None:
            # Use model-specific knowledge to configure forward prefetching:
            # each transformer block (layer) prefetches for the next few
            for i, layer in enumerate(model.layers):
                if i >= len(model.layers) - num_to_prefetch:
                    break
                layers_to_prefetch = [
                    model.layers[i + j] for j in range(1, num_to_prefetch + 1)
                ]
                layer.set_modules_to_forward_prefetch(layers_to_prefetch)

        events: List[EventType] = []
        unshard_with_record = self._get_unshard_with_record(
            FSDPParamGroup.unshard, events
        )
        reshard_with_record = self._get_reshard_with_record(
            FSDPParamGroup.reshard, events
        )
        post_backward_with_record = self._get_post_backward_with_record(
            FSDPParamGroup.post_backward, events
        )
        expected_backward_events = [
            # Default backward prefetching
            ("unshard", "layers.3", TrainingState.PRE_BACKWARD),
            ("unshard", "layers.2", TrainingState.PRE_BACKWARD),
            ("reshard", "layers.3", TrainingState.POST_BACKWARD),
            ("post_backward", "layers.3", TrainingState.POST_BACKWARD),
            ("unshard", "layers.1", TrainingState.PRE_BACKWARD),
            ("reshard", "layers.2", TrainingState.POST_BACKWARD),
            ("post_backward", "layers.2", TrainingState.POST_BACKWARD),
            ("unshard", "layers.0", TrainingState.PRE_BACKWARD),
            ("reshard", "layers.1", TrainingState.POST_BACKWARD),
            ("post_backward", "layers.1", TrainingState.POST_BACKWARD),
            ("reshard", "layers.0", TrainingState.POST_BACKWARD),
            ("post_backward", "layers.0", TrainingState.POST_BACKWARD),
            ("reshard", "", TrainingState.POST_BACKWARD),
            ("post_backward", "", TrainingState.POST_BACKWARD),
        ]
        with patch_unshard(unshard_with_record), patch_reshard(
            reshard_with_record
        ), patch_post_backward(post_backward_with_record):
            set_forward_prefetch(model, num_to_prefetch=1)
            loss = model(inp)
            expected_forward_events = [
                ("unshard", "", TrainingState.FORWARD),
                # `layers.i` prefetches `layers.i+1`
                ("unshard", "layers.0", TrainingState.FORWARD),
                ("unshard", "layers.1", TrainingState.FORWARD),
                ("reshard", "layers.0", TrainingState.FORWARD),
                ("unshard", "layers.2", TrainingState.FORWARD),
                ("reshard", "layers.1", TrainingState.FORWARD),
                ("unshard", "layers.3", TrainingState.FORWARD),
                ("reshard", "layers.2", TrainingState.FORWARD),
                ("reshard", "layers.3", TrainingState.FORWARD),
            ]
            self.assertEqual(events, expected_forward_events)
            events.clear()
            loss.sum().backward()
            self.assertEqual(events, expected_backward_events)
            events.clear()

            set_forward_prefetch(model, num_to_prefetch=2)
            loss = model(inp)
            expected_forward_events = [
                ("unshard", "", TrainingState.FORWARD),
                # `layers.i` prefetches `layers.i+1` and `layers.i+2`
                ("unshard", "layers.0", TrainingState.FORWARD),
                ("unshard", "layers.1", TrainingState.FORWARD),
                ("unshard", "layers.2", TrainingState.FORWARD),
                ("reshard", "layers.0", TrainingState.FORWARD),
                ("unshard", "layers.3", TrainingState.FORWARD),
                ("reshard", "layers.1", TrainingState.FORWARD),
                ("reshard", "layers.2", TrainingState.FORWARD),
                ("reshard", "layers.3", TrainingState.FORWARD),
            ]
            self.assertEqual(events, expected_forward_events)
            events.clear()
            loss.sum().backward()
            self.assertEqual(events, expected_backward_events)
            events.clear()

    @skip_if_lt_x_gpu(2)
    def test_set_modules_to_backward_prefetch(self):
        n_layers = 4
        reshard_after_forward = True
        checkpoint_impl = "utils"
        model, _, inp = self._init_transformer(
            n_layers, reshard_after_forward, checkpoint_impl
        )

        def set_backward_prefetch(model: Transformer, num_to_prefetch: int) -> None:
            # Use model-specific knowledge to configure backward prefetching:
            # each transformer block (layer) prefetches for the previous few
            for i, layer in enumerate(model.layers):
                if i < num_to_prefetch:
                    continue
                layers_to_prefetch = [
                    model.layers[i - j] for j in range(1, num_to_prefetch + 1)
                ]
                layer.set_modules_to_backward_prefetch(layers_to_prefetch)

        events: List[EventType] = []
        unshard_with_record = self._get_unshard_with_record(
            FSDPParamGroup.unshard, events
        )
        reshard_with_record = self._get_reshard_with_record(
            FSDPParamGroup.reshard, events
        )
        post_backward_with_record = self._get_post_backward_with_record(
            FSDPParamGroup.post_backward, events
        )
        expected_forward_events = [
            # Default forward prefetching
            ("unshard", "", TrainingState.FORWARD),  # root
            ("unshard", "layers.0", TrainingState.FORWARD),
            ("reshard", "layers.0", TrainingState.FORWARD),
            ("unshard", "layers.1", TrainingState.FORWARD),
            ("reshard", "layers.1", TrainingState.FORWARD),
            ("unshard", "layers.2", TrainingState.FORWARD),
            ("reshard", "layers.2", TrainingState.FORWARD),
            ("unshard", "layers.3", TrainingState.FORWARD),
            ("reshard", "layers.3", TrainingState.FORWARD),
        ]
        with patch_unshard(unshard_with_record), patch_reshard(
            reshard_with_record
        ), patch_post_backward(post_backward_with_record):
            set_backward_prefetch(model, num_to_prefetch=1)
            loss = model(inp)
            self.assertEqual(events, expected_forward_events)
            events.clear()
            loss.sum().backward()
            expected_backward_events = [
                # Root prefetches `layers.3` per default
                ("unshard", "layers.3", TrainingState.PRE_BACKWARD),
                # `layers.i` prefetches for `layers.i-1` (same as default)
                ("unshard", "layers.2", TrainingState.PRE_BACKWARD),
                ("reshard", "layers.3", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.3", TrainingState.POST_BACKWARD),
                ("unshard", "layers.1", TrainingState.PRE_BACKWARD),
                ("reshard", "layers.2", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.2", TrainingState.POST_BACKWARD),
                ("unshard", "layers.0", TrainingState.PRE_BACKWARD),
                ("reshard", "layers.1", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.1", TrainingState.POST_BACKWARD),
                ("reshard", "layers.0", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.0", TrainingState.POST_BACKWARD),
                ("reshard", "", TrainingState.POST_BACKWARD),
                ("post_backward", "", TrainingState.POST_BACKWARD),
            ]
            self.assertEqual(events, expected_backward_events)
            events.clear()

            set_backward_prefetch(model, num_to_prefetch=2)
            loss = model(inp)
            self.assertEqual(events, expected_forward_events)
            events.clear()
            loss.sum().backward()
            expected_backward_events = [
                # Root prefetches `layers.3` per default
                ("unshard", "layers.3", TrainingState.PRE_BACKWARD),
                # `layers.i` prefetches for `layers.i-1` and `layers.i-2`
                ("unshard", "layers.2", TrainingState.PRE_BACKWARD),
                ("unshard", "layers.1", TrainingState.PRE_BACKWARD),
                ("reshard", "layers.3", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.3", TrainingState.POST_BACKWARD),
                ("unshard", "layers.0", TrainingState.PRE_BACKWARD),
                ("reshard", "layers.2", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.2", TrainingState.POST_BACKWARD),
                ("reshard", "layers.1", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.1", TrainingState.POST_BACKWARD),
                ("reshard", "layers.0", TrainingState.POST_BACKWARD),
                ("post_backward", "layers.0", TrainingState.POST_BACKWARD),
                ("reshard", "", TrainingState.POST_BACKWARD),
                ("post_backward", "", TrainingState.POST_BACKWARD),
            ]
            self.assertEqual(events, expected_backward_events)
            events.clear()

    @skip_if_lt_x_gpu(2)
    def test_fully_shard_multi_module_backward_prefetch(self):
        n_layers = 5
        model_args = ModelArgs(n_layers=n_layers, checkpoint_activations=True)
        model = Transformer(model_args)
        for i in range(n_layers):
            if i == 0:
                fully_shard(model.layers[i])
            elif i % 2 == 1:
                fully_shard([model.layers[i], model.layers[i + 1]])
        fully_shard([model.tok_embeddings, model.pos_embeddings])
        fully_shard([model.norm, model.output], reshard_after_forward=False)
        fully_shard(model)
        optim = torch.optim.AdamW(model.parameters(), lr=1e-2)

        events: List[EventType] = []
        unshard_with_record = self._get_unshard_with_record(
            FSDPParamGroup.unshard, events
        )
        post_backward_with_record = self._get_post_backward_with_record(
            FSDPParamGroup.post_backward, events
        )
        inp = torch.randint(
            0, model_args.vocab_size, (2, model_args.max_seq_len), device="cuda"
        )
        with patch_unshard(unshard_with_record), patch_post_backward(
            post_backward_with_record
        ):
            for iter_idx in range(3):
                loss = model(inp)
                expected_events = [
                    (
                        "unshard",
                        "tok_embeddings, pos_embeddings",
                        TrainingState.FORWARD,
                    ),
                    ("unshard", "layers.0", TrainingState.FORWARD),
                    ("unshard", "layers.1, layers.2", TrainingState.FORWARD),
                    ("unshard", "layers.3, layers.4", TrainingState.FORWARD),
                    ("unshard", "norm, output", TrainingState.FORWARD),
                ]
                self.assertEqual(events, expected_events)
                events.clear()
                loss.sum().backward()
                expected_events = [
                    # (norm, output) does not reshard after forward, so there is
                    # no unshard to begin backward
                    ("unshard", "layers.3, layers.4", TrainingState.PRE_BACKWARD),
                    ("post_backward", "norm, output", TrainingState.POST_BACKWARD),
                    ("unshard", "layers.1, layers.2", TrainingState.PRE_BACKWARD),
                    (
                        "post_backward",
                        "layers.3, layers.4",
                        TrainingState.POST_BACKWARD,
                    ),
                    ("unshard", "layers.0", TrainingState.PRE_BACKWARD),
                    (
                        "post_backward",
                        "layers.1, layers.2",
                        TrainingState.POST_BACKWARD,
                    ),
                    (
                        "unshard",
                        "tok_embeddings, pos_embeddings",
                        TrainingState.PRE_BACKWARD,
                    ),
                    ("post_backward", "layers.0", TrainingState.POST_BACKWARD),
                    (
                        "post_backward",
                        "tok_embeddings, pos_embeddings",
                        TrainingState.POST_BACKWARD,
                    ),
                ]
                events.clear()
                optim.step()
                optim.zero_grad()

    @skip_if_lt_x_gpu(2)
    def test_fully_shard_multi_module_unused_module(self):
        class ModuleWithUnusedLinear(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.unused_lin = nn.Linear(1, 1)
                self.lin = nn.Linear(16, 16)

            def forward(self, x: torch.Tensor) -> torch.Tensor:
                return nn.functional.relu(self.lin(x))

        model = nn.Sequential(
            ModuleWithUnusedLinear(), ModuleWithUnusedLinear(), nn.Linear(16, 16)
        )
        fully_shard([model[0].unused_lin, model[0].lin], reshard_after_forward=True)
        fully_shard([model[1].unused_lin, model[1].lin], reshard_after_forward=True)
        fully_shard(model)
        optim = torch.optim.AdamW(model.parameters(), lr=1e-2)

        events: List[EventType] = []
        unshard_with_record = self._get_unshard_with_record(
            FSDPParamGroup.unshard, events
        )
        post_backward_with_record = self._get_post_backward_with_record(
            FSDPParamGroup.post_backward, events
        )
        inp = torch.randn((2, 16), device="cuda")
        with patch_unshard(unshard_with_record), patch_post_backward(
            post_backward_with_record
        ):
            for iter_idx in range(3):
                loss = model(inp)
                expected_events = [
                    ("unshard", "", TrainingState.FORWARD),
                    ("unshard", "0.unused_lin, 0.lin", TrainingState.FORWARD),
                    ("unshard", "1.unused_lin, 1.lin", TrainingState.FORWARD),
                ]
                self.assertEqual(events, expected_events)
                events.clear()
                loss.sum().backward()
                expected_events = [
                    # Since both `model[0]` and `model[1]` have unused modules
                    # that never ran forward, they do not reshard after forward
                    # despite setting it to `True`. Check that there are no
                    # unshards in backward.
                    (
                        "post_backward",
                        "1.unused_lin, 1.lin",
                        TrainingState.POST_BACKWARD,
                    ),
                    (
                        "post_backward",
                        "0.unused_lin, 0.lin",
                        TrainingState.POST_BACKWARD,
                    ),
                    ("post_backward", "", TrainingState.POST_BACKWARD),
                ]
                events.clear()
                optim.step()
                optim.zero_grad()

    @skip_if_lt_x_gpu(2)
    def test_backward_misprefetch(self):
        torch.manual_seed(42)
        model = MLP(dim=16, device="cuda")
        ref_model = copy.deepcopy(model)
        ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
        fully_shard(model.in_proj)
        fully_shard(model.out_proj)
        fully_shard(model)
        optim = torch.optim.Adam(model.parameters(), lr=1e-2)

        # Backward should run through `out_proj` -> `in_proj`, so if `in_proj`
        # prefetches for `out_proj`, then this is a misprefetch, as `out_proj`
        # should not be needed anymore for backward.
        model.in_proj.set_modules_to_backward_prefetch([model.out_proj])

        torch.manual_seed(self.rank + 1)
        inp = torch.randn((2, 16), device="cuda")
        for _ in range(3):
            ref_optim.zero_grad()
            ref_loss = ref_model(inp).sum()
            ref_loss.backward()
            for param in ref_model.parameters():
                dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
            ref_optim.step()
            optim.zero_grad()
            loss = model(inp).sum()
            loss.backward()
            optim.step()
            self.assertEqual(ref_loss, loss)

    def _init_transformer(
        self,
        n_layers: int,
        reshard_after_forward: Union[bool, int],
        checkpoint_impl: Optional[str],
    ):
        model_args = ModelArgs(
            n_layers=n_layers, checkpoint_activations=(checkpoint_impl == "utils")
        )
        model = Transformer(model_args)
        for module in model.modules():
            if isinstance(module, TransformerBlock):
                if checkpoint_impl == "composable":
                    checkpoint(module)
                fully_shard(module, reshard_after_forward=reshard_after_forward)
        fully_shard(model, reshard_after_forward=reshard_after_forward)
        optim = torch.optim.Adam(model.parameters(), lr=1e-2)
        inp = torch.randint(
            0, model_args.vocab_size, (2, model_args.max_seq_len), device="cuda"
        )
        return model, optim, inp

    def _get_unshard_with_record(
        self, orig_unshard: Callable, events: List[EventType]
    ) -> Callable:
        def unshard_with_record(self, *args, **kwargs):
            nonlocal events
            if (
                self._all_gather_result is None
                and self._sharded_state != ShardedState.UNSHARDED
            ):  # skip no-ops
                events.append(("unshard", self._module_fqn, self._training_state))
            return orig_unshard(self, *args, **kwargs)

        return unshard_with_record

    def _get_reshard_with_record(
        self, orig_reshard: Callable, events: List[EventType]
    ) -> Callable:
        def reshard_with_record(self, *args, **kwargs):
            nonlocal events
            if (
                self._training_state == TrainingState.FORWARD
                and not self._reshard_after_forward
            ):  # skip no-ops
                return
            events.append(("reshard", self._module_fqn, self._training_state))
            return orig_reshard(self, *args, **kwargs)

        return reshard_with_record

    def _get_post_backward_with_record(
        self, orig_post_backward: Callable, events: List[EventType]
    ) -> Callable:
        def post_backward_with_record(self, *args, **kwargs):
            nonlocal events
            ret = orig_post_backward(self, *args, **kwargs)
            # Use training state after running post-backward to check that the
            # state is transitioned to `POST_BACKWARD` as expected
            events.append(("post_backward", self._module_fqn, self._training_state))
            return ret

        return post_backward_with_record


class TestFullyShardUnshardMultiProcess(FSDPTest):
    @property
    def world_size(self) -> int:
        return min(torch.cuda.device_count(), 2)

    @skip_if_lt_x_gpu(2)
    def test_unshard_async(self):
        class ReduceModule(nn.Module):
            def __init__(self, dim: int, mesh: DeviceMesh):
                super().__init__()
                self.mesh = mesh
                self.weight = nn.Parameter(torch.randn(dim, dim))

            def forward(self, x: torch.Tensor):
                y = F.relu(x @ self.weight)
                # NOTE: This all-reduce is not differentiable and is included
                # to exercise the overlap.
                work = dist.all_reduce(y, group=self.mesh.get_group(), async_op=True)
                return y, work

        class MLPs(nn.Module):
            def __init__(self, dim: int):
                super().__init__()
                self.mlp1 = MLP(dim)
                self.mlp2 = MLP(dim)
                self.mlp3 = MLP(dim)

            def forward(self, ys: List[torch.Tensor], works: List[dist.Work]):
                (y1, y2, y3), (work1, work2, work3) = ys, works
                work1.wait()
                z1 = self.mlp1(y1)
                work2.wait()
                z2 = self.mlp2(y2)
                work3.wait()
                z3 = self.mlp3(y3)
                return z1 + z2 + z3

        class ReduceModel(nn.Module):
            def __init__(self, dim: int, mesh: DeviceMesh):
                super().__init__()
                self.reduce_module1 = ReduceModule(dim, mesh)
                self.reduce_module2 = ReduceModule(dim, mesh)
                self.reduce_module3 = ReduceModule(dim, mesh)
                self.mlps = MLPs(dim)

            def forward(self, x: torch.Tensor):
                y1, work1 = self.reduce_module1(x)
                if isinstance(self.mlps.mlp1, FSDPModule):
                    self.mlps.mlp1.unshard(async_op=True)
                y2, work2 = self.reduce_module2(x)
                if isinstance(self.mlps.mlp2, FSDPModule):
                    self.mlps.mlp2.unshard(async_op=True)
                y3, work3 = self.reduce_module3(x)
                if isinstance(self.mlps.mlp3, FSDPModule):
                    self.mlps.mlp3.unshard(async_op=True)
                return self.mlps([y1, y2, y3], [work1, work2, work3])

        mesh = init_device_mesh("cuda", (self.world_size,))
        batch_size, dim = 2, 8
        torch.manual_seed(42)
        ref_model = replicate(ReduceModel(dim, mesh).cuda())
        ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
        torch.manual_seed(42)
        model = ReduceModel(dim, mesh)
        fully_shard(model.mlps.mlp1, reshard_after_forward=False)
        fully_shard(model.mlps.mlp2, reshard_after_forward=False)
        fully_shard(model.mlps.mlp3, reshard_after_forward=False)
        fully_shard(model.mlps)
        replicate(model.cuda())
        optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
        torch.manual_seed(42 + self.rank + 1)
        inp = torch.randn((batch_size, dim), device="cuda")
        for _ in range(10):
            losses: List[torch.Tensor] = []
            for _model, _optim in ((ref_model, ref_optim), (model, optim)):
                losses.append(_model(inp).sum())
                losses[-1].backward()
                with implicit_replication():
                    _optim.step()
                _optim.zero_grad()
            self.assertEqual(losses[0], losses[1])


class TestFullyShardUnshardMultiThread(FSDPTestMultiThread):
    @property
    def world_size(self) -> int:
        return 2

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_unshard_no_param_group(self):
        # Check that we can call `unshard()` on a module with no parameter
        # group / no managed parameters without erroring
        model = nn.Sequential(nn.Linear(4, 4), nn.Linear(4, 4))
        for lin in model:
            fully_shard(lin)
        fully_shard(model)
        handle = model.unshard(async_op=True)
        handle.wait()

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_unshard_without_lazy_init(self):
        torch.manual_seed(42)
        model = MLP(4)
        for param in model.parameters():
            dist.broadcast(param, src=0)
        ref_model = copy.deepcopy(model)
        fully_shard(model)
        model.unshard()  # no lazy init yet
        for ref_param, param in zip(ref_model.parameters(), model.parameters()):
            self.assertEqual(ref_param, param)


if __name__ == "__main__":
    run_tests()