File: test_fully_shard_extensions.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (467 lines) | stat: -rw-r--r-- 17,866 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Owner(s): ["oncall: distributed"]

import contextlib
import copy
import functools
import math
import threading
import unittest
from typing import Any, List, Optional, Tuple, Union

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.utils._pytree as pytree
from torch.autograd.grad_mode import _unsafe_preserve_version_counter
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.fsdp import fully_shard, MixedPrecisionPolicy
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
    check_sharded_parity,
    FSDPTest,
    FSDPTestMultiThread,
    MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.two_tensor import TwoTensor


def two_tensor_fsdp_pre_all_gather_v1(
    self, mesh: DeviceMesh
) -> Tuple[Tuple[torch.Tensor, ...], Any]:
    all_gather_inputs = (self.a, self.b)
    metadata = None
    return all_gather_inputs, metadata


def two_tensor_fsdp_pre_all_gather_v2(
    self,
    mesh: DeviceMesh,
    outer_size: torch.Size,
    outer_stride: Tuple[int, ...],
    module: nn.Module,
    mp_policy: MixedPrecisionPolicy,
) -> Tuple[Tuple[torch.Tensor, ...], Any]:
    all_gather_inputs = (self.a, self.b)
    metadata = None
    return all_gather_inputs, metadata


def two_tensor_fsdp_post_all_gather(
    self,
    all_gather_outputs: Tuple[torch.Tensor, ...],
    metadata: Any,
    param_dtype: torch.dtype,
    *,
    out: Optional[torch.Tensor] = None,
) -> Union[Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], None]:
    assert metadata is None, f"{metadata}"
    a, b = all_gather_outputs
    if out is not None:
        assert isinstance(out, TwoTensor), f"{type(out)}"
        if a.dtype == param_dtype:
            assert a.untyped_storage().data_ptr() == out.a.untyped_storage().data_ptr()
            assert b.untyped_storage().data_ptr() == out.b.untyped_storage().data_ptr()
        else:
            assert out.a.dtype == param_dtype, f"{out.a.dtype} {param_dtype}"
            assert out.b.dtype == param_dtype, f"{out.b.dtype} {param_dtype}"
            out.a.copy_(a)
            out.b.copy_(b)
        return
    tensors_to_free = (a, b)
    # If the cast is real, then the all-gather outputs will not alias the
    # returned `TwoTensor`'s `a` and `b`
    two_tensor = TwoTensor(a, b).to(param_dtype)
    return two_tensor, tensors_to_free


class BFloat16AllGatherTensor(torch.Tensor):
    @staticmethod
    def __new__(cls, data: torch.Tensor, pad_in_pre_all_gather: bool = True):
        return torch.Tensor._make_wrapper_subclass(
            cls,
            data.shape,
            data.stride(),
            data.storage_offset(),
            dtype=data.dtype,
            device=data.device,
        )

    def __init__(self, data: torch.Tensor, pad_in_pre_all_gather: bool = True):
        self._data = data
        self._pad_in_pre_all_gather = pad_in_pre_all_gather

    def fsdp_pre_all_gather(
        self,
        mesh: DeviceMesh,
        outer_size: torch.Size,
        outer_stride: Tuple[int, ...],
        module: nn.Module,
        mp_policy: MixedPrecisionPolicy,
    ) -> Tuple[Tuple[torch.Tensor, ...], Any]:
        assert mesh.ndim == 1, f"{mesh.ndim}"
        mesh_size = mesh.size()
        requires_padding = outer_size[0] % mesh_size != 0
        if requires_padding and self._pad_in_pre_all_gather:
            sharded_padded_size = list(outer_size)
            sharded_padded_size[0] = math.ceil(outer_size[0] / mesh_size)
            padded_out = torch.empty(
                sharded_padded_size, dtype=torch.bfloat16, device=self.device
            )
            padded_out[: self._data.size(0)].copy_(self._data)
            return (padded_out,), None
        else:
            return self._data.to(torch.bfloat16), None

    def fsdp_post_all_gather(
        self,
        all_gather_outputs: Tuple[torch.Tensor, ...],
        metadata: Any,
        param_dtype: torch.dtype,
        *,
        out: Optional[torch.Tensor] = None,
    ) -> Union[Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], None]:
        assert metadata is None, f"{metadata}"
        (tensor,) = all_gather_outputs
        assert tensor.dtype == torch.bfloat16, f"{tensor.dtype}"
        if out is not None:
            with _unsafe_preserve_version_counter(out):
                out.copy_(tensor)
            return
        upcast_tensor = tensor.to(param_dtype)
        return upcast_tensor, (tensor, upcast_tensor)

    @classmethod
    def __torch_dispatch__(cls, func, types, args, kwargs):
        pad_in_pre_all_gather = None

        def unwrap(x: cls):
            nonlocal pad_in_pre_all_gather
            if pad_in_pre_all_gather is None:
                pad_in_pre_all_gather = x._pad_in_pre_all_gather
            else:
                assert pad_in_pre_all_gather == x._pad_in_pre_all_gather
            return x._data

        out = func(
            *pytree.tree_map_only(cls, unwrap, args),
            **pytree.tree_map_only(cls, unwrap, kwargs),
        )
        return pytree.tree_map_only(
            torch.Tensor, lambda x: cls(x, pad_in_pre_all_gather), out
        )

    def __tensor_flatten__(self):
        return ["_data"], None

    @staticmethod
    def __tensor_unflatten__(
        inner_tensors, outer_size: torch.Size, outer_stride: Tuple[int, ...]
    ):
        return inner_tensors["_data"]

    def __repr__(self):
        return f"{self.__class__.__name__}({self._data})"


class TestFullyShardAllGatherExtensionsCommon:
    @property
    def world_size(self) -> int:
        return 2

    @contextlib.contextmanager
    def _patch_two_tensor_fsdp_all_gather(self, pre_all_gather_version: int):
        lock = threading.Lock()
        if pre_all_gather_version == 1:
            TwoTensor.fsdp_pre_all_gather = two_tensor_fsdp_pre_all_gather_v1
        elif pre_all_gather_version == 2:
            TwoTensor.fsdp_pre_all_gather = two_tensor_fsdp_pre_all_gather_v2
        TwoTensor.fsdp_post_all_gather = two_tensor_fsdp_post_all_gather
        dist.barrier()
        try:
            yield
        finally:
            dist.barrier()
            with lock:  # only one thread needs to delete
                if hasattr(TwoTensor, "fsdp_pre_all_gather"):
                    delattr(TwoTensor, "fsdp_pre_all_gather")
                if hasattr(TwoTensor, "fsdp_post_all_gather"):
                    delattr(TwoTensor, "fsdp_post_all_gather")

    def _init_two_tensor_mlp(self) -> nn.Module:
        # Disable bias because the reference model will end up with a bias
        # gradient that is a `TwoTensor`, whereas the FSDP model does not
        model = nn.Sequential(*[MLP(8, bias=False) for _ in range(3)])
        for mlp in model:
            mlp.in_proj.weight = nn.Parameter(
                TwoTensor(mlp.in_proj.weight, mlp.in_proj.weight.clone())
            )
            mlp.out_proj.weight = nn.Parameter(
                TwoTensor(mlp.out_proj.weight, mlp.out_proj.weight.clone())
            )
        return model


class TestFullyShardAllGatherExtensionsMultiProcess(
    TestFullyShardAllGatherExtensionsCommon, FSDPTest
):
    @skip_if_lt_x_gpu(2)
    def test_all_gather_extensions_train_parity(self):
        with self._patch_two_tensor_fsdp_all_gather(pre_all_gather_version=1):
            self.run_subtests(
                {"reshard_after_forward": [True, False]},
                self._test_all_gather_extensions_train_parity,
            )
        with self._patch_two_tensor_fsdp_all_gather(pre_all_gather_version=2):
            self.run_subtests(
                {"reshard_after_forward": [True, False]},
                self._test_all_gather_extensions_train_parity,
            )

    def _test_all_gather_extensions_train_parity(self, reshard_after_forward: bool):
        torch.manual_seed(42)
        model = self._init_two_tensor_mlp()
        ref_model = copy.deepcopy(model).cuda()
        ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2, foreach=True)
        fully_shard_fn = functools.partial(
            fully_shard, reshard_after_forward=reshard_after_forward
        )
        for mlp in model:
            fully_shard_fn(mlp)
        fully_shard_fn(model)
        optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
        check_sharded_parity(self, ref_model, model)

        torch.manual_seed(42 + self.rank + 1)
        inp = torch.randn((2, 8), device="cuda")
        for iter_idx in range(10):
            losses: List[torch.Tensor] = []
            for _model in (ref_model, model):
                losses.append(_model(inp).sum())
                losses[-1].backward()
                if _model is ref_model:
                    for param_name, param in _model.named_parameters():
                        dist.all_reduce(param.grad)
                        param.grad.detach().div_(self.world_size)
            self.assertEqual(losses[0], losses[1])
            check_sharded_parity(self, ref_model, model)
            for _optim in (ref_optim, optim):
                _optim.step()
                _optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
            check_sharded_parity(self, ref_model, model)


class TestFullyShardAllGatherExtensionsMultiThread(
    TestFullyShardAllGatherExtensionsCommon, FSDPTestMultiThread
):
    @property
    def world_size(self) -> int:
        return 8

    @property
    def device(self) -> torch.device:
        return torch.device("cuda:0")

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_all_gather_extensions_end_to_end(self):
        with self._patch_two_tensor_fsdp_all_gather(pre_all_gather_version=1):
            self.run_subtests(
                {"reshard_after_forward": [True, False]},
                self._test_all_gather_extensions_end_to_end,
            )
        with self._patch_two_tensor_fsdp_all_gather(pre_all_gather_version=2):
            self.run_subtests(
                {"reshard_after_forward": [True, False]},
                self._test_all_gather_extensions_end_to_end,
            )

    def _test_all_gather_extensions_end_to_end(self, reshard_after_forward: bool):
        # Check that we can run the meta-device initialization flow
        with torch.device("meta"):
            model = self._init_two_tensor_mlp()
        for param in model.parameters():
            self.assertEqual(param.device, torch.device("meta"))
        fully_shard_fn = functools.partial(
            fully_shard,
            reshard_after_forward=reshard_after_forward,
            mp_policy=MixedPrecisionPolicy(param_dtype=torch.bfloat16),
        )
        for mlp in model:
            fully_shard_fn(mlp)
        fully_shard_fn(model)
        model.to_empty(device=self.device)
        for param in model.parameters():
            nn.init.trunc_normal_(param)
        optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)

        # Run a few iterations to check for errors
        torch.manual_seed(42 + self.rank + 1)
        inp = torch.randn((2, 8), device="cuda")
        for _ in range(3):
            model(inp).sum().backward()
            optim.step()
            optim.zero_grad()

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_all_gather_extensions_monkey_patch(self):
        tls = threading.local()
        tls.ran_pre_all_gather = False

        # Define a pre/post-all-gather pair that quantizes to bf16 for the
        # all-gather and de-quantizes back to the parameter dtype
        def fsdp_pre_all_gather(
            self,
            mesh: DeviceMesh,
            outer_size: torch.Size,
            outer_stride: Tuple[int, ...],
            module: nn.Module,
            mp_policy: MixedPrecisionPolicy,
        ) -> Tuple[Tuple[torch.Tensor, ...], Any]:
            nonlocal tls
            tls.ran_pre_all_gather = True
            return (self.to(torch.bfloat16),), None

        @torch.no_grad()
        def fsdp_post_all_gather(
            self,
            all_gather_outputs: Tuple[torch.Tensor, ...],
            metadata: Any,
            param_dtype: torch.dtype,
            *,
            out: Optional[torch.Tensor] = None,
        ) -> Union[Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], None]:
            (tensor,) = all_gather_outputs
            assert metadata is None, f"{metadata}"
            assert tensor.dtype == torch.bfloat16, f"{tensor.dtype}"
            if out is not None:
                with _unsafe_preserve_version_counter(out):
                    out.copy_(tensor)
                return
            upcast_tensor = tensor.to(param_dtype)
            return upcast_tensor, (tensor, upcast_tensor)

        with torch.device("meta"):
            model = self._init_two_tensor_mlp()
        for mlp in model:
            fully_shard(mlp)
        fully_shard(model)
        model.to_empty(device=self.device)
        for param in model.parameters():
            nn.init.trunc_normal_(param)
        # Monkey patch the pre/post-all-gather functions *after* `to_empty()`
        # since the local tensor objects change from materialization
        self.assertGreater(sum("weight" in n for n, _ in model.named_parameters()), 0)
        for param_name, param in model.named_parameters():
            if "weight" in param_name:
                # Need to use `_local_tensor` to patch the tensor object
                local_param = param._local_tensor
                # Monkey patch on the `torch.Tensor` as instance methods to
                # show that the extension can work even without a subclass
                local_param.fsdp_pre_all_gather = fsdp_pre_all_gather.__get__(
                    local_param
                )
                local_param.fsdp_post_all_gather = fsdp_post_all_gather.__get__(
                    local_param
                )
        optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)

        # Run a few iterations to check for errors
        torch.manual_seed(42 + self.rank + 1)
        inp = torch.randn((2, 8), device="cuda")
        for _ in range(3):
            model(inp).sum().backward()
            optim.step()
            optim.zero_grad()
        assert tls.ran_pre_all_gather

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_all_gather_extension_outer_size_stride(self):
        """
        NOTE: We cannot easily test the incorrect case where the user-defined
        ``fsdp_pre_all_gather`` does not correctly pad the local tensor because
        only some ranks may require padding, in which case only those ranks
        will error out and the all-gather will timeout.
        """
        assert (
            self.world_size >= 2
        ), f"Assumes world size of at least 2 but got {self.world_size=}"
        model = MLP(dim=3, dim_multiplier=3)
        for module in model.modules():
            for param_name, param in module.named_parameters(recurse=False):
                if "weight" in param_name:
                    param = nn.Parameter(BFloat16AllGatherTensor(param))
                    setattr(module, param_name, param)
        fully_shard(model)
        optim = torch.optim.AdamW(model.parameters(), lr=1e-2, fused=True)
        torch.manual_seed(42 + self.rank + 1)
        inp = torch.randn((2, 3), device="cuda")
        loss = model(inp).sum()
        loss.backward()
        optim.step()
        optim.zero_grad()

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_all_gather_extension_hsdp_mesh(self):
        tls = threading.local()
        replicate_size = 2
        shard_size = self.world_size // replicate_size
        mesh = init_device_mesh(
            "cuda",
            (replicate_size, shard_size),
            mesh_dim_names=("dp_replicate", "dp_shard"),
        )

        def fsdp_pre_all_gather(
            self,
            mesh: DeviceMesh,
            outer_size: torch.Size,
            outer_stride: Tuple[int, ...],
            module: nn.Module,
            mp_policy: MixedPrecisionPolicy,
        ) -> Tuple[Tuple[torch.Tensor, ...], Any]:
            nonlocal tls
            tls.mesh = mesh
            return (self,), None

        @torch.no_grad()
        def fsdp_post_all_gather(
            self,
            all_gather_outputs: Tuple[torch.Tensor, ...],
            metadata: Any,
            param_dtype: torch.dtype,
            *,
            out: Optional[torch.Tensor] = None,
        ) -> Union[Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], None]:
            (tensor,) = all_gather_outputs
            if out is not None:
                return
            return tensor, (tensor,)

        model = self._init_two_tensor_mlp()
        for mlp in model:
            fully_shard(mlp, mesh=mesh)
        fully_shard(model, mesh=mesh)
        self.assertGreater(sum("weight" in n for n, _ in model.named_parameters()), 0)
        for param_name, param in model.named_parameters():
            if "weight" in param_name:
                # Need to use `_local_tensor` to patch the tensor object
                local_param = param._local_tensor
                # Monkey patch on the `torch.Tensor` as instance methods to
                # show that the extension can work even without a subclass
                local_param.fsdp_pre_all_gather = fsdp_pre_all_gather.__get__(
                    local_param
                )
                local_param.fsdp_post_all_gather = fsdp_post_all_gather.__get__(
                    local_param
                )

        inp = torch.randn((2, 8), device="cuda")
        model(inp)
        # Check that FSDP passes only the shard mesh to the pre-all-gather
        self.assertEqual(tls.mesh.ndim, 1)
        self.assertEqual(tls.mesh.size(), shard_size)


if __name__ == "__main__":
    run_tests()