File: test_fully_shard_state_dict.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (391 lines) | stat: -rw-r--r-- 15,335 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# Owner(s): ["oncall: distributed"]

import copy
import functools
import unittest
from contextlib import nullcontext
from typing import Dict, Optional

import torch
import torch.nn as nn
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.fsdp import CPUOffloadPolicy, fully_shard
from torch.distributed.tensor import distribute_tensor, DTensor, Shard
from torch.distributed.tensor.parallel import (
    ColwiseParallel,
    parallelize_module,
    RowwiseParallel,
)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    ModelArgs,
    Transformer,
    TransformerBlock,
)


class TestFullyShardStateDictMultiProcess(FSDPTest):
    @property
    def world_size(self) -> int:
        return min(8, torch.cuda.device_count())

    @skip_if_lt_x_gpu(2)
    def test_dp_state_dict_save_load(self):
        fsdp_mesh = init_device_mesh("cuda", (self.world_size,))
        self.run_subtests(
            {"mlp_dim": [2, 3, 4, 5], "mesh": [fsdp_mesh]},
            self._test_dp_state_dict_save_load,
        )
        self.run_subtests(
            {"mlp_dim": [16], "mesh": [fsdp_mesh], "use_shard_placement_fn": [True]},
            self._test_dp_state_dict_save_load,
        )
        if self.world_size % 2 != 0:
            return
        hsdp_mesh = init_device_mesh(
            "cuda",
            (self.world_size // 2, 2),
            mesh_dim_names=("dp_replicate", "dp_shard"),
        )
        self.run_subtests(
            {"mlp_dim": [2, 3, 4, 5], "mesh": [hsdp_mesh]},
            self._test_dp_state_dict_save_load,
        )
        self.run_subtests(
            {"mlp_dim": [16], "mesh": [hsdp_mesh], "use_shard_placement_fn": [True]},
            self._test_dp_state_dict_save_load,
        )

    def _test_dp_state_dict_save_load(
        self, mlp_dim: int, mesh: DeviceMesh, use_shard_placement_fn: bool = False
    ):
        torch.manual_seed(42)
        base_model = nn.Sequential(
            MLP(mlp_dim),
            nn.Sequential(MLP(mlp_dim), nn.Linear(mlp_dim, mlp_dim)),
            MLP(mlp_dim),
        )

        def _shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
            largest_dim = largest_dim_size = -1
            for dim, dim_size in enumerate(param.shape):
                if dim_size > largest_dim_size:
                    largest_dim = dim
                    largest_dim_size = dim_size
            return Shard(largest_dim)

        shard_placement_fn = _shard_placement_fn if use_shard_placement_fn else None
        fully_shard_fn = functools.partial(
            fully_shard, mesh=mesh, shard_placement_fn=shard_placement_fn
        )

        # Check basic `reshard_after_forward=True`
        model1 = copy.deepcopy(base_model)
        for module in model1:
            fully_shard_fn(module)
        fully_shard_fn(model1)
        self._test_state_dict_save_load(model1)

        # Check `reshard_after_forward=False` before and after a forward
        model2 = copy.deepcopy(base_model)
        for module in model2:
            fully_shard_fn(module, reshard_after_forward=False)
        fully_shard_fn(model2, reshard_after_forward=False)
        self._test_state_dict_save_load(model2)
        ref_sharded_sd = model2.state_dict()
        inp = torch.randn((2, mlp_dim), device="cuda")
        model2(inp)  # parameters are not resharded after this forward
        # Check that state dict hooks reshard
        sharded_sd = model2.state_dict()
        self.assertEqual(set(ref_sharded_sd.keys()), set(sharded_sd.keys()))
        for key, value in ref_sharded_sd.items():
            self.assertEqual(value, sharded_sd[key])

    @skip_if_lt_x_gpu(2)
    def test_dp_state_dict_cpu_offload(self):
        self.run_subtests(
            {
                "offload_policy": [
                    CPUOffloadPolicy(pin_memory=True),
                    CPUOffloadPolicy(pin_memory=False),
                ],
                "cpu_state_dict": [True, False],
            },
            self._test_dp_state_dict_cpu_offload,
        )

    def _test_dp_state_dict_cpu_offload(
        self, offload_policy: CPUOffloadPolicy, cpu_state_dict: bool
    ):
        mlp_dim = 4
        torch.manual_seed(42)
        with torch.device("meta"):
            model = nn.Sequential(
                nn.Linear(mlp_dim, mlp_dim, bias=False),
                nn.Linear(mlp_dim, mlp_dim, bias=False),
            )
        for module in model:
            fully_shard(module, offload_policy=offload_policy)
        fully_shard(model, offload_policy=offload_policy)

        # split full sd into multiple pieces
        # to test loading with `strict=False`
        state_dicts = []
        for name, dtensor in model.named_parameters():
            full_tensor = torch.randn(dtensor.size())
            sharded_tensor = distribute_tensor(
                full_tensor, dtensor.device_mesh, dtensor.placements
            )
            if cpu_state_dict:
                sharded_tensor = sharded_tensor.cpu()
            state_dicts.append({name: sharded_tensor})

        # check that we can load with some parameters still on meta device
        for sd in state_dicts:
            model.load_state_dict(sd, assign=True, strict=False)

        # lazy init without error
        inp = torch.rand((mlp_dim, mlp_dim), device="cuda")

        context = (
            self.assertRaisesRegex(
                RuntimeError,
                r"Found following parameters on non-CPU device: \[\('0.weight', device\(type='cuda'",
            )
            if not cpu_state_dict
            else nullcontext()
        )
        with context:
            model(inp).sum()
            state_dict = model.state_dict()
            for name, dtensor in state_dict.items():
                self.assertEqual(dtensor.device.type, "cpu")

    def test_2d_state_dict_correctness(self):
        dp_size = 2
        global_mesh = init_device_mesh(
            "cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
        )
        dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
        torch.manual_seed(42)
        mlp_dim = 4

        # model init
        model = nn.Sequential(*[MLP(mlp_dim) for _ in range(3)])
        model_2d = copy.deepcopy(model)

        # FSDP + TP
        model_2d = parallelize_module(
            model_2d,
            device_mesh=tp_mesh,
            parallelize_plan={
                "0.in_proj": ColwiseParallel(),
                "0.out_proj": RowwiseParallel(),
                "1.in_proj": ColwiseParallel(),
                "1.out_proj": RowwiseParallel(),
                "2.in_proj": ColwiseParallel(),
                "2.out_proj": RowwiseParallel(),
            },
        )
        for mlp in model_2d:
            fully_shard(mlp, mesh=dp_mesh)
        fully_shard(model_2d, mesh=dp_mesh)

        # state_dict parity check
        model_state_dict = model.state_dict()
        model_2d_state_dict = model_2d.state_dict()
        for tensor, dtensor in zip(
            model_state_dict.values(), model_2d_state_dict.values()
        ):
            self.assertTrue(isinstance(dtensor, DTensor))
            self.assertEqual(tensor, dtensor.full_tensor())

    @skip_if_lt_x_gpu(2)
    def test_dp_tp_state_dict_save_load(self):
        dp_size = 2
        global_mesh = init_device_mesh(
            "cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
        )
        self.run_subtests(
            {"mlp_dim": [4, 6, 8, 10]},
            functools.partial(self._test_dp_tp_state_dict_save_load, global_mesh),
        )

    def _test_dp_tp_state_dict_save_load(self, global_mesh: DeviceMesh, mlp_dim: int):
        dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
        torch.manual_seed(42)
        model = nn.Sequential(*[MLP(mlp_dim) for _ in range(3)])
        model = parallelize_module(
            model,
            device_mesh=tp_mesh,
            parallelize_plan={
                "0.in_proj": ColwiseParallel(),
                "0.out_proj": RowwiseParallel(),
                "1.in_proj": ColwiseParallel(),
                "1.out_proj": RowwiseParallel(),
                "2.in_proj": ColwiseParallel(),
                "2.out_proj": RowwiseParallel(),
            },
        )
        for mlp in model:
            fully_shard(mlp, mesh=dp_mesh)
        fully_shard(model, mesh=dp_mesh)
        self._test_state_dict_save_load(model)

    @skip_if_lt_x_gpu(4)
    def test_hsdp_tp_state_dict_save_load(self):
        global_mesh = init_device_mesh(
            "cuda",
            (2, 2, self.world_size // 4),
            mesh_dim_names=("dp_replicate", "dp_shard", "tp"),
        )
        self.run_subtests(
            {"mlp_dim": [4, 6, 8, 10]},
            functools.partial(self._test_hsdp_tp_state_dict_save_load, global_mesh),
        )

    def _test_hsdp_tp_state_dict_save_load(self, global_mesh: DeviceMesh, mlp_dim: int):
        dp_mesh, tp_mesh = global_mesh["dp_replicate", "dp_shard"], global_mesh["tp"]
        torch.manual_seed(42)
        model = nn.Sequential(*[MLP(mlp_dim) for _ in range(3)])
        model = parallelize_module(
            model,
            device_mesh=tp_mesh,
            parallelize_plan={
                "0.in_proj": ColwiseParallel(),
                "0.out_proj": RowwiseParallel(),
                "1.in_proj": ColwiseParallel(),
                "1.out_proj": RowwiseParallel(),
                "2.in_proj": ColwiseParallel(),
                "2.out_proj": RowwiseParallel(),
            },
        )
        for mlp in model:
            fully_shard(mlp, mesh=dp_mesh)
        fully_shard(model, mesh=dp_mesh)
        self._test_state_dict_save_load(model)

    def _test_state_dict_save_load(self, model: nn.Module):
        for param_name, param in model.named_parameters():
            self.assertIsInstance(
                param,
                DTensor,
                f"Expects parameters to be sharded as DTensors but got {param_name} "
                f"as {type(param)}: {param}",
            )
        old_fill_value = 1
        new_fill_value = 42 + self.rank
        with torch.no_grad():
            for param in model.parameters():
                param.fill_(old_fill_value)
        # Use that the parameters are currently sharded, meaning that their
        # data pointers correspond to the sharded parameter data
        param_name_to_data_ptr = {
            n: p.to_local().data_ptr() for n, p in model.named_parameters()
        }
        ref_sharded_sizes = [p.size() for p in model.parameters()]
        state_dict = model.state_dict()
        for param, ref_sharded_size in zip(model.parameters(), ref_sharded_sizes):
            self.assertEqual(param.size(), ref_sharded_size)
            self.assertTrue(isinstance(param, nn.Parameter))

        # Verify that keys match, values are DTensors, and values share the
        # same storage as the existing sharded parameter data
        self.assertEqual(set(state_dict.keys()), set(param_name_to_data_ptr.keys()))
        for param_name, tensor in state_dict.items():
            self.assertTrue(isinstance(tensor, DTensor))
            if param_name_to_data_ptr[param_name] == 0:
                # Check that this is padding (added by DTensor)
                self.assertGreater(self.rank, 0)
                self.assertEqual(torch.count_nonzero(tensor.to_local()).item(), 0)
            else:
                self.assertEqual(
                    tensor.to_local().data_ptr(), param_name_to_data_ptr[param_name]
                )

        # Verify that we can load a new state dict that contains DTensors with
        # storages different from the current model parameters
        new_state_dict: Dict[str, DTensor] = {}
        for param_name, dtensor in state_dict.items():
            # Construct new DTensors to exercise load state dict writeback
            new_state_dict[param_name] = dtensor.detach().clone().fill_(new_fill_value)
        for param in model.parameters():
            self.assertEqual(
                param.to_local(),
                torch.ones_like(param.to_local()) * old_fill_value,
            )
        model.load_state_dict(new_state_dict)
        for param_name, param in model.named_parameters():
            self.assertEqual(
                param.to_local(),
                torch.ones_like(param.to_local()) * new_fill_value,
            )
            local_param = param.to_local()
            # Only guarantee that the local tensor's data pointer does not
            # change if the sharding was even (i.e. no padding); otherwise,
            # FSDP may re-pad the local tensor, changing its data pointer
            if local_param.size(0) * param.device_mesh.size() == param.size(0):
                self.assertEqual(
                    local_param.data_ptr(), param_name_to_data_ptr[param_name]
                )


class TestFullyShardStateDictMultiThread(FSDPTestMultiThread):
    @property
    def world_size(self):
        return 2

    @unittest.skipIf(not TEST_CUDA, "no cuda")
    def test_rank0_offload_full_state_dict(self):
        # Construct a reference unsharded model on all ranks
        model_args = ModelArgs(dropout_p=0.0)
        torch.manual_seed(42)
        ref_model = Transformer(model_args).cuda()
        for param in ref_model.parameters():
            torch.distributed.broadcast(param.detach(), src=0)

        # Construct a sharded model and sharded state dict on all ranks
        model = copy.deepcopy(ref_model)
        for module in model.modules():
            if isinstance(module, TransformerBlock):
                fully_shard(module)
        fully_shard(model)
        sharded_sd = model.state_dict()

        # Save a reference CPU full state dict on rank 0 and delete the
        # reference model otherwise
        if self.rank != 0:
            del ref_model
        else:
            ref_gpu_full_sd = ref_model.state_dict()
            ref_full_sd = {k: v.cpu() for k, v in ref_gpu_full_sd.items()}
            del ref_gpu_full_sd

        # Reshard the GPU sharded state dict to a CPU full state dict on rank 0
        full_sd = {}
        for param_name, sharded_param in sharded_sd.items():
            full_param = sharded_param.full_tensor()
            if self.rank == 0:
                full_sd[param_name] = full_param.cpu()
            else:
                del full_param

        # Check that we have a CPU full state dict only on rank 0
        if self.rank == 0:
            self.assertEqual(len(full_sd), len(ref_full_sd))
            self.assertEqual(list(full_sd.keys()), list(ref_full_sd.keys()))
            for (param_name, param), ref_param in zip(
                full_sd.items(), ref_full_sd.values()
            ):
                self.assertEqual(param.device, torch.device("cpu"))
                self.assertEqual(param.device, ref_param.device)
                self.assertEqual(param, ref_param)
        else:
            self.assertEqual(len(full_sd), 0)


if __name__ == "__main__":
    run_tests()