File: test_pp_composability.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (364 lines) | stat: -rw-r--r-- 14,028 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Owner(s): ["oncall: distributed"]
import copy
import os
from typing import TYPE_CHECKING

import torch
import torch.distributed.checkpoint as dcp
import torch.nn as nn
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint import FileSystemReader
from torch.distributed.checkpoint.default_planner import _EmptyStateDictLoadPlanner
from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_dict
from torch.distributed.checkpoint.state_dict_loader import _load_state_dict
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.pipelining import PipelineStage
from torch.distributed.pipelining.schedules import (
    PipelineScheduleSingle,
    Schedule1F1B,
    ScheduleGPipe,
    ScheduleInterleaved1F1B,
    ScheduleInterleavedZeroBubble,
    ScheduleLoopedBFS,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
    MultiProcessTestCase,
    requires_nccl,
    skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    skip_but_pass_in_sandcastle_if,
)
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir


if TYPE_CHECKING:
    from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE


# MLP Layer
class MLPModule(torch.nn.Module):
    def __init__(self, d_hid: int):
        super().__init__()
        self.net1 = torch.nn.Linear(d_hid, d_hid)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(d_hid, d_hid)

    def forward(self, x):
        x = self.net1(x)
        x = self.relu(x)
        x = self.net2(x)
        return x


class ComposabilityTest(MultiProcessTestCase):
    @classmethod
    def backend_str(cls) -> str:
        # Testing with NCCL backend
        return "nccl"

    def setUp(self):
        super().setUp()
        self._spawn_processes()

    def tearDown(self):
        super().tearDown()
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    @property
    def world_size(self):
        return 4

    @property
    def device(self):
        return self.rank

    @requires_nccl()
    @skip_if_lt_x_gpu(4)
    @skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "Test requires 4+ GPUs")
    @parametrize("dp_type", ["DDP", "FSDP"])
    @parametrize(
        "ScheduleClass",
        [
            ScheduleGPipe,
            Schedule1F1B,
            ScheduleInterleaved1F1B,
            ScheduleLoopedBFS,
            ScheduleInterleavedZeroBubble,
        ],
    )
    @parametrize("use_new_runtime", [False, True])
    def test_manual_with_data_parallel(self, dp_type, ScheduleClass, use_new_runtime):
        device = torch.device("cuda", self.device)
        torch.cuda.set_device(self.device)
        store = torch.distributed.FileStore(self.file_name, self.world_size)
        torch.distributed.init_process_group(
            backend="nccl",
            store=store,
            rank=self.rank,
            world_size=self.world_size,
            # TODO (kwen2501): disabled eager init below as this test is failing
            # with bug fix #139013.  Temporarily use lazy init to cover the
            # composability aspect of this test.
            # device_id=device,
        )
        device_mesh = init_device_mesh(
            "cuda", mesh_shape=(2, 2), mesh_dim_names=("dp", "pp")
        )
        pp_group = device_mesh["pp"].get_group()
        dp_mesh = device_mesh["dp"]

        # create "entire model"
        total_layers = 8
        dim = 10
        full_model = nn.ModuleList([MLPModule(dim) for _ in range(total_layers)])
        ref_model = nn.Sequential(*copy.deepcopy(full_model))
        ref_model.to(self.device)

        # Prepare inputs
        num_microbatches = 8
        inputs = [
            torch.rand((num_microbatches, dim), device=self.device)
            for _ in range(dp_mesh.size())
        ]
        input = inputs[dp_mesh.get_local_rank()]
        input_mb = [[input[i].reshape((1, dim))] for i in range(num_microbatches)]

        # dummy loss needed just to force backwards to run in schedule step
        def loss_fn(y, target):
            return y.sum()

        # Get stage module i from the entire model
        def get_stage_module(stage_idx, num_stages):
            # divide the model (8 layers) by the number of stages
            layers_per_stage = total_layers // num_stages
            assert layers_per_stage * num_stages == total_layers
            # return offset so validation code can match partial layer back to orig model
            offset = stage_idx * layers_per_stage
            partial_model = nn.Sequential(
                *full_model[offset : (stage_idx + 1) * layers_per_stage]
            )
            partial_model.to(self.device)
            return partial_model, offset

        # Apply DP to stage module
        def apply_dp(partial_model, dp_type):
            if dp_type == "FSDP":
                # apply FSDP
                mp_policy = MixedPrecisionPolicy(
                    # TODO(whc) need to fix PP + FSDP-mixed-precision
                    # tracer for PP assumes f32 and is caught off guard when runtime FSDP interacts using bf16 inputs
                    # param_dtype=torch.bfloat16, reduce_dtype=torch.float32
                    param_dtype=torch.float32,
                    reduce_dtype=torch.float32,
                )
                fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
                for layer in partial_model.children():
                    fully_shard(
                        layer,
                        **fsdp_config,
                        reshard_after_forward=False,
                    )
                dp_model = fully_shard(partial_model, **fsdp_config)
            elif dp_type == "DDP":
                dp_model = DDP(partial_model, process_group=dp_mesh.get_group())
            else:
                raise RuntimeError(f"unsupported dp type {dp_type}")
            return dp_model

        # Create pipeline stage
        def build_stage(stage_idx, num_stages):
            partial_model, offset = get_stage_module(stage_idx, num_stages)
            dp_model = apply_dp(partial_model, dp_type)
            stage = PipelineStage(
                dp_model,
                stage_idx,
                num_stages,
                self.device,
                group=pp_group,
            )
            return stage, offset

        # Attach to a schedule
        if issubclass(ScheduleClass, PipelineScheduleSingle):
            if use_new_runtime:
                # Can't test PipelineScheduleSingle classes using new runtime
                # return should still clean up this test instance correctly
                torch.distributed.destroy_process_group()
                return
            pipeline_stage, offset = build_stage(pp_group.rank(), pp_group.size())
            partial_models = [pipeline_stage.submod]
            offsets = [offset]
            pipeline_schedule = ScheduleClass(
                pipeline_stage,
                n_microbatches=num_microbatches,
                loss_fn=loss_fn,
            )
        else:
            n_virtual = 2
            num_stages = pp_group.size() * n_virtual
            stages = []
            offsets = []
            for i in range(n_virtual):
                stage, offset = build_stage(pp_group.rank() + n_virtual * i, num_stages)
                stages.append(stage)
                offsets.append(offset)
                partial_models = [pipeline_stage.submod for pipeline_stage in stages]
            pipeline_schedule = ScheduleClass(
                stages,
                n_microbatches=num_microbatches,
                loss_fn=loss_fn,
            )

        # Run
        # TODO(whc) should we make it a hard error if you pass arguments into the step API on nonzero ranks?
        # why are we passing inputs/targets on every rank?
        if pp_group.rank() == 0:
            pipeline_schedule._step_microbatches(arg_mbs=input_mb, target_mbs=input_mb)
        else:
            pipeline_schedule._step_microbatches(
                arg_mbs=[[] for _ in input_mb], target_mbs=input_mb
            )

        # Ref model runs on 2 different inputs, accumulating grads across them.
        # this ensures that we detect if the FSDP reduce becomes a no-op.
        # (in fsdp case, we use one of these inputs on each DP rank)
        (ref_model(inputs[0]).sum()).backward()
        (ref_model(inputs[1]).sum()).backward()

        # simulate the built-in averaging done by FSDP
        for p in ref_model.parameters():
            p.grad /= dp_mesh.size()

        # Validate that whichever weights we have locally match that part of our local/full ref model
        # (we force FSDP's grads to be all-gathered (.full_tensor) to make it simpler)
        ref_parameters = dict(ref_model.named_parameters())
        if dp_type == "FSDP":
            for partial_model, offset in zip(partial_models, offsets):
                for name, p in partial_model.named_parameters():
                    parts = name.split(".")
                    parts[0] = str(int(parts[0]) + offset)
                    name = ".".join(parts)
                    ref_p = ref_parameters[name]
                    self.assertTrue(isinstance(p.grad, DTensor))
                    torch.testing.assert_close(
                        ref_p.grad, p.grad.full_tensor(), rtol=1e-5, atol=5e-5
                    )
        elif dp_type == "DDP":
            for partial_model, offset in zip(partial_models, offsets):
                for name, p in partial_model.named_parameters():
                    parts = name.split(".")[1:]  # remove the "module." prefix
                    parts[0] = str(int(parts[0]) + offset)
                    name = ".".join(parts)
                    ref_p = ref_parameters[name]
                    torch.testing.assert_close(ref_p.grad, p.grad, rtol=1e-5, atol=5e-5)

        torch.distributed.destroy_process_group()

    @requires_nccl()
    @skip_if_lt_x_gpu(4)
    @skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "Test requires 4+ GPUs")
    def test_pp_and_dcp(self):
        """
        Test that pipeline parallelism and distributed checkpointing can be used together and
        with saved correct FQNs
        """

        class AppState(Stateful):
            def __init__(self, model, optimizer):
                self.model = model
                self.optimizer = optimizer

            def state_dict(self):
                # this line automatically manages FSDP FQN's, as well as sets the default state dict type to FSDP.SHARDED_STATE_DICT
                model_state_dict, optimizer_state_dict = get_state_dict(
                    self.model, self.optimizer
                )
                return {"model": model_state_dict, "optim": optimizer_state_dict}

            def load_state_dict(self, state_dict):
                # sets our state dicts on the model and optimizer, now that we've loaded
                set_state_dict(
                    self.model,
                    self.optimizer,
                    model_state_dict=state_dict["model"],
                    optim_state_dict=state_dict["optim"],
                )

        class PPModelChunk(nn.Module):
            def __init__(self, layers: nn.ModuleDict, start_index: int, end_index: int):
                super().__init__()
                # Filter layers based on start_index and end_index
                self.layers = nn.ModuleDict(
                    {str(i): layers[str(i)] for i in range(start_index, end_index)}
                )

            def forward(self, x):
                for layer in self.layers.values():
                    x = layer(x)
                return x

        device = torch.device("cuda", self.device)
        torch.cuda.set_device(self.device)
        store = torch.distributed.FileStore(self.file_name, self.world_size)
        torch.distributed.init_process_group(
            backend="nccl",
            store=store,
            rank=self.rank,
            world_size=self.world_size,
            device_id=device,
        )
        # create "entire model"
        total_layers = 8
        dim = 10
        full_model = nn.ModuleDict(
            {f"{i}": MLPModule(dim) for i in range(total_layers)}
        )
        # Calculate start and end indices based on rank
        start_index = self.rank * 2
        end_index = start_index + 2
        pp_model = PPModelChunk(full_model, start_index, end_index)

        pp_model.to(self.device)
        opt = torch.optim.Adam(pp_model.parameters(), lr=0.1)

        # perform work in a temp dir that is cleaned up after the test
        @with_temp_dir
        def _dcp_test(self):
            state_dict = {"app": AppState(pp_model, opt)}
            dcp.save(state_dict, checkpoint_id=self.temp_dir)
            # temp checkpoint
            sd: STATE_DICT_TYPE = {}
            _load_state_dict(
                sd,
                storage_reader=FileSystemReader(self.temp_dir),
                planner=_EmptyStateDictLoadPlanner(),
            )
            # Check parameter names in sd and compare with pp_model
            pp_model_param_names = set(pp_model.state_dict().keys())
            sd_param_names = set(sd["app"]["model"].keys())
            # Verify each parameter name in pp_model is contained in sd
            for param_name in pp_model_param_names:
                self.assertIn(
                    param_name,
                    sd_param_names,
                    f"Parameter name '{param_name}' not found in state_dict.",
                )

        _dcp_test(self)


instantiate_parametrized_tests(ComposabilityTest)

if __name__ == "__main__":
    run_tests()