File: test_contract.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (176 lines) | stat: -rw-r--r-- 6,485 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Owner(s): ["oncall: distributed"]

from copy import deepcopy
from typing import List, Tuple

import torch
import torch.nn as nn
from torch.distributed._composable import _get_registry, contract
from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase


class ToyModel(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.seq1 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)])
        self.seq2 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)])
        self.p = nn.Parameter(torch.randn(10, 10), requires_grad=True)
        self.b = torch.zeros(1)  # buffer

    def forward(self, x, y):
        with torch.no_grad():
            self.b += x.sum() + y.sum()

        return self.p + self.seq1(x) + self.seq2(y)


class TestContract(TestCase):
    @skipIfTorchDynamo("Dynamo does not support the state key")
    def test_add_hooks(self):
        def forward_pre_hook(
            module: nn.Module, inp: Tuple[torch.Tensor]
        ) -> Tuple[torch.Tensor]:
            return inp

        def forward_hook(
            module: nn.Module, inp: Tuple[torch.Tensor], out: torch.Tensor
        ) -> torch.Tensor:
            return out

        def backward_pre_hook(
            module: nn.Module, grad_output: torch.Tensor
        ) -> torch.Tensor:
            return grad_output

        def backward_hook(
            module: nn.Module,
            grad_input: Tuple[torch.Tensor],
            grad_output: torch.Tensor,
        ) -> Tuple[torch.Tensor]:
            return grad_input

        @contract()
        def noop_api(module: nn.Module) -> nn.Module:
            module.register_forward_pre_hook(forward_pre_hook)
            module.register_forward_hook(forward_hook)
            module.register_full_backward_pre_hook(backward_pre_hook)
            module.register_full_backward_hook(backward_hook)
            return module

        model = ToyModel()
        model_with_hooks = deepcopy(model)
        noop_api(model.seq1)
        noop_api(model.seq2)

        x, y = torch.randn(10, 10), torch.randn(10, 10)
        model(x, y).sum().backward()
        model_with_hooks(x, y).sum().backward()

        for p1, p2 in zip(model.parameters(), model_with_hooks.parameters()):
            self.assertEqual(p1, p2)

    @skipIfTorchDynamo("Dynamo does not support the state key")
    def test_modify_fqn(self):
        class ModelWrapper(nn.Module):
            def __init__(self, module):
                super().__init__()
                self.module = module

            def forward(self, x):
                return self.module(x)

        @contract()
        def wrap_module(module: nn.Module) -> nn.Module:
            return ModelWrapper(module)

        model = ToyModel()

        regex = "Checking parameters: Composable distributed API implementations cannot modify FQNs."
        with self.assertRaisesRegex(RuntimeError, regex):
            wrap_module(model.seq1)

    @skipIfTorchDynamo("Dynamo does not support the state key")
    def test_state(self):
        def check_and_update_state_hook(
            module: nn.Module, inp: Tuple[torch.Tensor]
        ) -> Tuple[torch.Tensor]:
            self.assertEqual(api.state(module).dummy_state, 7)
            api.state(module).dummy_state = 8
            return inp

        # FIXME: circular reference looks a bit weird. Shall we make .state a
        # top-level API instead attached to contract API?
        @contract()
        def api(module: nn.Module) -> nn.Module:
            api.state(module).dummy_state = 7
            module.register_forward_pre_hook(check_and_update_state_hook)
            return module

        model = ToyModel()
        api(model.seq1)

        self.assertEqual(api.state(model.seq1).dummy_state, 7)
        model(torch.zeros(10, 10), torch.zeros(10, 10))
        self.assertEqual(api.state(model.seq1).dummy_state, 8)

    @skipIfTorchDynamo("Dynamo does not support the state key")
    def test_registry(self):
        @contract()
        def api1(module: nn.Module) -> nn.Module:
            return module

        @contract()
        def api2(module: nn.Module) -> nn.Module:
            return module

        model = ToyModel()
        model = api1(model)
        self.assertEqual(1, len(_get_registry(model)))
        self.assertTrue("api1" in _get_registry(model))
        model = api2(model)
        self.assertEqual(2, len(_get_registry(model)))
        self.assertTrue([_get_registry(model).keys()], ["api1", "api2"])
        self.assertEqual(None, _get_registry(model.seq1))
        self.assertEqual(None, _get_registry(model.seq2))

        with self.assertRaisesRegex(AssertionError, "api1 has already been applied"):
            model = api1(model)

    @skipIfTorchDynamo("Dynamo does not support the state key")
    def test_multi_module_api(self):
        @contract()
        def multi_module_api(modules: List[nn.Module]) -> nn.Module:
            return modules

        model = nn.Sequential(*[nn.Linear(3, 3) for _ in range(5)])
        multi_module_api([model[0], model[1]])
        multi_module_api([model[2], model[3]])
        multi_module_api([model[4]])
        # Check that modules have the same state and registry iff they shared
        # the same API call
        states = [multi_module_api.state(module) for module in model]
        self.assertEqual(states[0], states[1])
        self.assertEqual(states[2], states[3])
        self.assertNotEqual(states[0], states[2])
        self.assertNotEqual(states[0], states[4])
        self.assertNotEqual(states[2], states[4])
        registries = [_get_registry(module) for module in model]
        self.assertEqual(registries[0], registries[1])
        self.assertEqual(registries[2], registries[3])
        self.assertNotEqual(registries[0], registries[2])
        self.assertNotEqual(registries[0], registries[4])
        self.assertNotEqual(registries[2], registries[4])
        # Check that applying an API to a module multiple times errors
        model = nn.Sequential(*[nn.Linear(3, 3) for _ in range(5)])
        multi_module_api([model[0], model[1]])
        with self.assertRaisesRegex(
            AssertionError,
            "Each distinct composable distributed API can only be applied to "
            r"a module once. multi_module_api has already been applied to the "
            "following module:",
        ):
            multi_module_api([model[0], model[2]])


if __name__ == "__main__":
    run_tests()