1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
# Owner(s): ["oncall: distributed"]
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_distributed import requires_nccl
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
c10d_functional = torch.ops.c10d_functional
c10d_ops = torch.ops.c10d
class TestCommMode(TestCase):
def tearDown(self):
super().tearDown()
dist.destroy_process_group()
def setUp(self):
super().setUp()
self.world_size = 2
store = FakeStore()
dist.init_process_group(
backend="fake", rank=1, world_size=self.world_size, store=store
)
self.device_type = "cuda" if torch.cuda.is_available() else "cpu"
self.world_pg = dist.distributed_c10d._get_default_group()
def checksAssert(self, comm_mode, key, expected_value, expected_total_value):
comm_counts = comm_mode.get_comm_counts()
self.assertEqual(comm_mode.get_total_counts(), expected_total_value)
self.assertEqual(comm_counts[key], expected_value)
return
def test_comm_mode(self):
world_pg = self.world_pg
class WrapperModel(nn.Module):
def __init__(self, device):
super().__init__()
self.model = MLPModule(device=device)
def forward(self, x):
x = funcol.all_gather_tensor(x, 0, world_pg)
x = funcol.reduce_scatter_tensor(x, "sum", 0, world_pg)
out = self.model(x)
return funcol.all_reduce(out, "sum", world_pg)
model = WrapperModel(self.device_type)
comm_mode = CommDebugMode()
with comm_mode:
model(torch.randn(20, 10, device=self.device_type))
comm_counts = comm_mode.get_comm_counts()
self.assertEqual(comm_mode.get_total_counts(), 3)
self.assertEqual(comm_counts[c10d_functional.all_reduce], 1)
self.assertEqual(comm_counts[c10d_functional.all_gather_into_tensor], 1)
self.assertEqual(comm_counts[c10d_functional.reduce_scatter_tensor], 1)
def test_comm_mode_coalesced(self):
world_pg = self.world_pg
class WrapperModelCoalesced(nn.Module):
def __init__(self, device):
super().__init__()
self.model = MLPModule(device=device)
def forward(self, x):
x = funcol.all_gather_tensor(x, 0, world_pg)
x = funcol.reduce_scatter_tensor(x, "sum", 0, world_pg)
out = self.model(x)
return funcol.all_reduce_coalesced([out], "sum", world_pg)
model = WrapperModelCoalesced(self.device_type)
comm_mode = CommDebugMode()
with comm_mode:
model(torch.randn(20, 10, device=self.device_type))
comm_counts = comm_mode.get_comm_counts()
self.assertEqual(comm_mode.get_total_counts(), 3)
self.assertEqual(comm_counts[c10d_functional.all_reduce_coalesced], 1)
self.assertEqual(comm_counts[c10d_functional.all_gather_into_tensor], 1)
self.assertEqual(comm_counts[c10d_functional.reduce_scatter_tensor], 1)
def test_comm_mode_with_dtensor(self):
world_pg = self.world_pg
mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
def f(x, y):
return torch.mm(x, y)
comm_mode = CommDebugMode()
x = torch.randn(4, 8, requires_grad=True)
y = torch.randn(4, 32, requires_grad=True)
x_dtensor = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)
y_dtensor = DTensor.from_local(y, mesh, [Shard(0)], run_check=False)
with comm_mode:
f(x_dtensor, y_dtensor)
comm_counts = comm_mode.get_comm_counts()
self.assertEqual(comm_mode.get_total_counts(), 1)
self.assertEqual(comm_counts[c10d_functional.all_reduce], 0)
self.assertEqual(comm_counts[c10d_functional.all_gather_into_tensor], 1)
self.assertEqual(comm_counts[c10d_functional.reduce_scatter_tensor], 0)
@requires_nccl()
def test_comm_mode_with_c10d(self):
if not torch.cuda.is_available():
return
world_pg = self.world_pg
inp = torch.rand(2, 8, 16).cuda()
all_gather_out = inp.new_empty(self.world_size * 2, 8, 16)
comm_mode = CommDebugMode()
# tests c10d all_reduce tracing
with comm_mode:
dist.all_reduce(inp)
self.checksAssert(comm_mode, c10d_ops.allreduce_, 1, 1)
# tests c10d all_gather_into_tensor tracing
with comm_mode:
dist.all_gather_into_tensor(all_gather_out, inp)
self.checksAssert(comm_mode, c10d_ops._allgather_base_, 1, 1)
# tests c10d reduce_scatter tracing
with comm_mode:
dist.reduce_scatter_tensor(inp, all_gather_out)
self.checksAssert(comm_mode, c10d_ops._reduce_scatter_base_, 1, 1)
# tests c10d broadcast tracing
with comm_mode:
dist.broadcast(inp, 0)
self.checksAssert(comm_mode, c10d_ops.broadcast_, 1, 1)
# tests c10d gather tracing
with comm_mode:
dist.gather(inp, None, 0)
self.checksAssert(comm_mode, c10d_ops.gather_, 1, 1)
# tests c10d reduce tracing
with comm_mode:
dist.reduce(inp, 0)
self.checksAssert(comm_mode, c10d_ops.reduce_, 1, 1)
# tests c10d scatter tracing
with comm_mode:
dist.scatter(inp, None, 0)
self.checksAssert(comm_mode, c10d_ops.scatter_, 1, 1)
# tests c10d all_gather tracing
output_list = []
with comm_mode:
dist.all_gather(output_list, inp, None)
self.checksAssert(comm_mode, c10d_ops.allgather_, 1, 1)
# tests c10d allgather_coalesced_ tracing
output_list = []
with comm_mode:
dist.all_gather_coalesced(output_list, [inp], None)
self.checksAssert(comm_mode, c10d_ops.allgather_coalesced_, 1, 1)
# tests c10d allgather_into_tensor_coalesced_ tracing
with comm_mode, dist._coalescing_manager():
dist.all_gather_into_tensor(all_gather_out, inp)
self.checksAssert(comm_mode, c10d_ops.allgather_into_tensor_coalesced_, 1, 1)
# tests c10d allreduce_coalesced
with comm_mode:
dist.all_reduce_coalesced(inp)
self.checksAssert(comm_mode, c10d_ops.allreduce_coalesced_, 1, 1)
# tests c10d reduce_scatter_
with comm_mode:
dist.reduce_scatter(all_gather_out, [inp])
self.checksAssert(comm_mode, c10d_ops.reduce_scatter_, 1, 1)
# tests c10d reduce_scatter_tensor_coalesced
with comm_mode as A, dist._coalescing_manager() as B:
dist.reduce_scatter_tensor(all_gather_out, inp)
self.checksAssert(comm_mode, c10d_ops.reduce_scatter_tensor_coalesced_, 1, 1)
# tests c10d alltoall_
with comm_mode:
dist.all_to_all([inp], [inp])
self.checksAssert(comm_mode, c10d_ops.alltoall_, 1, 1)
# tests c10d alltoall_base_
with comm_mode:
dist.all_to_all_single(inp, inp)
self.checksAssert(comm_mode, c10d_ops.alltoall_base_, 1, 1)
if __name__ == "__main__":
run_tests()
|