File: test_comm_mode_features.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (375 lines) | stat: -rw-r--r-- 12,069 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]

from typing import Any, Dict

import torch
from torch.distributed._tensor import DeviceMesh
from torch.distributed._tensor.api import distribute_tensor, DTensor
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
    ColwiseParallel,
    parallelize_module,
    RowwiseParallel,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    MLPModule,
    MLPStacked,
    ModelArgs,
    NUM_DEVICES,
    skip_unless_torch_gpu,
    Transformer,
    with_comms,
)


c10d_functional = torch.ops.c10d_functional


class TestCommModeFeatures(DTensorTestBase):
    # checks if parameter / sharding info is the same as ground truth
    def check_same_set_of_keys(self, dict1, dict2):
        """
        Used to ensure the comm_mode parameter/sharding dictionaries contain the same information produced by the
        ground truth
        """
        dict1_keys = []
        dict2_keys = []

        for key in dict1:
            for nested_key in dict1[key]:
                dict1_keys.append((key, nested_key))

        for key in dict2:
            for nested_key in dict2[key]:
                dict2_keys.append((key, nested_key))

        self.assertEqual(len(dict1_keys), len(dict2_keys))

        for i in range(len(dict1_keys)):
            self.assertEqual(dict1_keys[i], dict2_keys[i])

    # generates the ground truth parameter and sharding info
    def ground_truth(self, model):
        """
        Used to generate the ground-truth parameter and sharding info for a given distributed model to
        verify comm_mode correctness
        """
        module_parameters_dict: Dict[str, Any] = {}
        module_sharding_dict: Dict[str, Any] = {}

        for name, parameters in model.named_parameters():
            # splits name into module name to create FQN and parameter name
            module_name = model.__class__.__name__ + "." + name.rsplit(".", 1)[0]
            parameter_name = name.rsplit(".", 1)[1]

            if module_name not in module_parameters_dict:
                module_parameters_dict[module_name] = {}

            module_parameters_dict[module_name][parameter_name] = parameters.data

            if isinstance(parameters.data, DTensor):
                key_name = module_name + "." + parameter_name
                module_sharding_dict[key_name] = parameters.data.placements

        return module_parameters_dict, module_sharding_dict

    @with_comms
    def test_MLP_distributed_sharding_display(self):
        """
        tests parameters and sharding on a module level
        """
        device_mesh = DeviceMesh(
            self.device_type,
            torch.arange(0, NUM_DEVICES),
        )

        inp_size = [8, 10]
        torch.manual_seed(0)
        inp = torch.rand(*inp_size, device=self.device_type)
        model = MLPModule(self.device_type)

        parallelize_plan = {
            "net1": ColwiseParallel(),
            "net2": RowwiseParallel(),
        }

        model = parallelize_module(model, device_mesh, parallelize_plan)

        comm_mode = CommDebugMode()

        with comm_mode:
            output_tp = model(inp)
            output_tp.sum().backward()

        module_parameters_dict, module_sharding_dict = self.ground_truth(model)

        # checks if parameter / sharding info is the same as ground truth
        self.check_same_set_of_keys(
            module_parameters_dict, comm_mode.get_parameter_info()
        )
        self.check_same_set_of_keys(module_sharding_dict, comm_mode.get_sharding_info())

    @with_comms
    def test_MLPStacked_distributed_sharding_display(self):
        """
        tests model with nested modules and makes sure comm_mode correctly resets parameter and sharding information
        """

        device_mesh = DeviceMesh(
            self.device_type,
            torch.arange(0, NUM_DEVICES),
        )

        inp_size = [8, 10]
        torch.manual_seed(0)
        inp = torch.rand(*inp_size, device=self.device_type)
        model = MLPModule(self.device_type)

        parallelize_plan = {
            "net1": ColwiseParallel(),
            "net2": RowwiseParallel(),
        }

        model = parallelize_module(model, device_mesh, parallelize_plan)

        comm_mode = CommDebugMode()

        with comm_mode:
            output_tp = model(inp)
            output_tp.sum().backward()

        model2 = MLPStacked(self.device_type)

        parallelize_plan = {
            "MLPStacked.layers.0.net1": ColwiseParallel(),
            "MLPStacked.layers.0.net2": RowwiseParallel(),
            "MLPStacked.layers.1.net1": ColwiseParallel(),
            "MLPStacked.layers.1.net2": RowwiseParallel(),
        }

        model2 = parallelize_module(model2, device_mesh, parallelize_plan)

        with comm_mode:
            # ensures that comm_mode is resetting properly
            self.assertEqual(comm_mode.get_parameter_info(), {})
            self.assertEqual(comm_mode.get_sharding_info(), {})

            output_tp = model2(inp)

        module_parameters_dict, module_sharding_dict = self.ground_truth(model2)

        self.check_same_set_of_keys(
            module_parameters_dict, comm_mode.get_parameter_info()
        )
        self.check_same_set_of_keys(module_sharding_dict, comm_mode.get_sharding_info())
        self.assertEqual(len(comm_mode.get_sharding_info()), 8)

    @with_comms
    def test_MLP_module_tracing(self):
        """
        tests module-level tracing for MLP module
        """

        device_mesh = DeviceMesh(
            self.device_type,
            torch.arange(0, NUM_DEVICES),
        )
        inp_size = [8, 10]
        torch.manual_seed(0)
        inp = torch.rand(*inp_size, device=self.device_type)
        model = MLPModule(self.device_type)

        parallelize_plan = {
            "net1": ColwiseParallel(),
            "net2": RowwiseParallel(),
        }

        model = parallelize_module(model, device_mesh, parallelize_plan)

        comm_mode = CommDebugMode()

        with comm_mode:
            output_tp = model(inp)
            output_tp.sum().backward()

        # checks to see if all sub-modules make it into the module_depth_dictionary
        self.assertEqual(len(comm_mode.advanced_module_tracker.module_helper_dict), 5)

        # checks to see if all collectives were correctly traced at the module-level

        self.assertEqual(
            comm_mode.comm_module_counts["Global"]["forward"][
                c10d_functional.all_reduce
            ],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["MLPModule"]["forward"][
                c10d_functional.all_reduce
            ],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["MLPModule.net2"]["forward"][
                c10d_functional.all_reduce
            ],
            1,
        )

    @skip_unless_torch_gpu
    @with_comms
    def test_transformer_module_tracing(self, is_seq_parallel=False):
        """
        tests module-level tracing for more complicated transformer module and
        ensures that comm_module depth and tracing dictionaries correctly reset
        """
        device_mesh = DeviceMesh(
            self.device_type,
            torch.arange(0, NUM_DEVICES),
        )
        inp_size = [8, 10]
        torch.manual_seed(0)
        inp = torch.rand(*inp_size, device=self.device_type)
        model = MLPModule(self.device_type)

        parallelize_plan = {
            "net1": ColwiseParallel(),
            "net2": RowwiseParallel(),
        }

        model = parallelize_module(model, device_mesh, parallelize_plan)

        comm_mode = CommDebugMode()
        with comm_mode:
            self.assertEqual(
                len(comm_mode.advanced_module_tracker.module_helper_dict), 1
            )
            self.assertEqual(
                comm_mode.comm_module_counts,
                {"Global": {"forward": {}, "backward": {}}},
            )
            output_tp = model(inp)

        model_args = ModelArgs(dropout_p=0.0)
        model2 = Transformer(model_args).to(device=self.device_type)
        model2 = Transformer.parallelize(model2, device_mesh, is_seq_parallel)

        inp_size = [8, 8]

        inp = torch.randint(model_args.vocab_size, inp_size, device=self.device_type)
        inp = distribute_tensor(inp, device_mesh=device_mesh)

        comm_mode = CommDebugMode()
        with comm_mode:
            output = model2(inp)

        # checks to see if all collectives were correctly traced at the module-level
        self.assertEqual(
            comm_mode.comm_module_counts["Global"]["forward"][
                c10d_functional.all_reduce
            ],
            6,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Global"]["forward"][
                c10d_functional.all_gather_into_tensor
            ],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer"]["forward"][
                c10d_functional.all_reduce
            ],
            6,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer"]["forward"][
                c10d_functional.all_gather_into_tensor
            ],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.tok_embeddings"]["forward"][
                c10d_functional.all_reduce
            ],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.pos_embeddings"]["forward"][
                c10d_functional.all_reduce
            ],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.0"]["forward"][
                c10d_functional.all_reduce
            ],
            2,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.0.attention"]["forward"][
                c10d_functional.all_reduce
            ],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.0.attention.wo"][
                "forward"
            ][c10d_functional.all_reduce],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.0.feed_forward"][
                "forward"
            ][c10d_functional.all_reduce],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.0.feed_forward.w2"][
                "forward"
            ][c10d_functional.all_reduce],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.1"]["forward"][
                c10d_functional.all_reduce
            ],
            2,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.1.attention"]["forward"][
                c10d_functional.all_reduce
            ],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.1.attention.wo"][
                "forward"
            ][c10d_functional.all_reduce],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.1.feed_forward"][
                "forward"
            ][c10d_functional.all_reduce],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.layers.1.feed_forward.w2"][
                "forward"
            ][c10d_functional.all_reduce],
            1,
        )
        self.assertEqual(
            comm_mode.comm_module_counts["Transformer.output"]["forward"][
                c10d_functional.all_gather_into_tensor
            ],
            1,
        )


if __name__ == "__main__":
    run_tests()