1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
from functools import partial
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import (
distribute_tensor,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed._tensor.experimental import local_map
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
funcol_py = torch.ops.c10d_functional
row_wise = [Shard(0)] # row-wise sharding placements on 1-d mesh
col_wise = [Shard(1)] # col-wise sharding placements on 1-d mesh
replicate = [Replicate()] # replicate placements on 1-d mesh
def equal_allgather_forward(device_mesh, X, Y):
eq = torch.tensor([torch.equal(X, Y)], device=X.device)
eq_gather = funcol.all_gather_tensor(eq, 0, device_mesh)
return torch.all(eq_gather).item()
def mm_all_gather_forward(device_mesh, A, B):
local_mm_result = torch.mm(A, B)
return funcol.all_gather_tensor(local_mm_result, 0, device_mesh).wait()
def mm_forward(A, B): # no device mesh needed since we don't do collective
return torch.mm(A, B)
def mm_allreduce_forward(device_mesh, A, B):
partial_sum_tensor = torch.mm(A, B)
return funcol.all_reduce(partial_sum_tensor, "sum", device_mesh).wait()
@partial(
local_map,
out_placements=replicate,
in_placements=(None, col_wise, row_wise),
)
def mm_allreduce_forward_decorated(device_mesh, A, B):
partial_sum_tensor = torch.mm(A, B)
return funcol.all_reduce(partial_sum_tensor, "sum", device_mesh).wait()
def mul_forward(X, scalar): # no device mesh needed since we don't do collective
return torch.mul(X, scalar)
class TestLocalMap(DTensorTestBase):
@property
def world_size(self):
return 2
# simple correctness check
@with_comms
def test_local_map_correctness(self):
device_mesh = init_device_mesh(
device_type=self.device_type, mesh_shape=(self.world_size,)
)
comm_mode = CommDebugMode()
# Y = X @ W
X = torch.randn(16, 8, device=self.device_type, requires_grad=False)
W = torch.randn(8, 12, device=self.device_type, requires_grad=False)
Y = torch.mm(X, W)
X_dt = distribute_tensor(
X, device_mesh, col_wise
) # col-wisely sharded X tensor
W_dt = distribute_tensor(
W, device_mesh, row_wise
) # row-wisely sharded W tensor
# Test 1: use the function returned from calling local_map
# get the function wrapped with DTensor/Tensor convertion
# mm_allreduce_forward is a function that applies to Tensors with manual collective
# local_mm_allreduce_forward is the function that does the same but applies to
# DTensors' `_local_tensor`.
local_mm_allreduce_forward = local_map(
mm_allreduce_forward,
out_placements=replicate,
in_placements=(None, col_wise, row_wise),
device_mesh=device_mesh,
)
with comm_mode:
Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt)
# output redistribution to Replicate
self.assertEqual(comm_mode.get_total_counts(), 1)
# check output placements
for placement in Y_dt.placements:
self.assertTrue(placement.is_replicate())
# check output value
self.assertEqual(Y_dt.to_local(), Y)
# Test 2: use the local_map decorator
with comm_mode:
Y_dt = mm_allreduce_forward_decorated(device_mesh, X_dt, W_dt)
# output redistribution to Replicate
self.assertEqual(comm_mode.get_total_counts(), 1)
# check output placements
for placement in Y_dt.placements:
self.assertTrue(placement.is_replicate())
# check output value
self.assertEqual(Y_dt.to_local(), Y)
# check for `out_placements`
@with_comms
def test_local_map_out_placements(self):
# Test 1: wrap out into DTensor w/ `out_placements`
device_mesh = init_device_mesh(
device_type=self.device_type, mesh_shape=(self.world_size,)
)
comm_mode = CommDebugMode()
# X.equal(Y)
X = torch.randn(8, 8, device=self.device_type, requires_grad=False)
Y = torch.randn(8, 8, device=self.device_type, requires_grad=False)
X_dt = distribute_tensor(X, device_mesh, row_wise)
Y_dt = distribute_tensor(Y, device_mesh, row_wise)
local_equal_allgather_forward = local_map(
equal_allgather_forward,
out_placements=None,
)
with comm_mode:
equal_dt = local_equal_allgather_forward(device_mesh, X_dt, Y_dt) # a bool
self.assertEqual(comm_mode.get_total_counts(), 1)
self.assertTrue(not equal_dt)
self.assertTrue(not (X.equal(Y)))
# Test 2: directly return out if no argument is DTensor
# matmul in DDP
X = torch.randn(
4 // self.world_size, 4, device=self.device_type, requires_grad=False
)
W = torch.randn(4, 4, device=self.device_type, requires_grad=False)
local_mm_all_gather_forward = local_map(
mm_all_gather_forward,
out_placements=row_wise,
in_placements=(None, row_wise, replicate),
)
with comm_mode:
Y = local_mm_all_gather_forward(device_mesh, X, W)
self.assertEqual(comm_mode.get_total_counts(), 1)
self.assertEqual(
comm_mode.get_comm_counts()[funcol_py.all_gather_into_tensor], 1
)
X_replicate = funcol.all_gather_tensor(X, 0, device_mesh).wait()
Y_replicate = torch.mm(X_replicate, W)
self.assertEqual(Y, Y_replicate) # Y is a torch.Tensor
# check for `in_placements` handling
@with_comms
def test_local_map_in_placements(self):
device_mesh = init_device_mesh(
device_type=self.device_type, mesh_shape=(self.world_size,)
)
comm_mode = CommDebugMode()
# Y = X @ W
X = torch.randn(16, 8, device=self.device_type, requires_grad=False)
W = torch.randn(8, 12, device=self.device_type, requires_grad=False)
Y = torch.mm(X, W)
X_dt = distribute_tensor(
X, device_mesh, row_wise
) # row-wisely sharded X tensor
W_dt = distribute_tensor(W, device_mesh, replicate) # replicate W tensor
# Test 1: explicitly pass `in_placements`
local_mm_forward = local_map(
mm_forward,
out_placements=row_wise,
in_placements=(row_wise, replicate),
device_mesh=device_mesh,
)
with comm_mode:
Y_dt = local_mm_forward(X_dt, W_dt)
# no communication should occur in this case
self.assertEqual(comm_mode.get_total_counts(), 0)
for placement in Y_dt.placements:
self.assertTrue(placement.is_shard(dim=0))
self.assertEqual(Y_dt.full_tensor(), Y)
# Test 2: `in_placements=None`
local_mm_forward = local_map(
mm_forward,
out_placements=row_wise,
device_mesh=device_mesh,
)
with comm_mode:
Y_dt = local_mm_forward(X_dt, W_dt)
self.assertEqual(comm_mode.get_total_counts(), 0)
for placement in Y_dt.placements:
self.assertTrue(placement.is_shard(dim=0))
self.assertEqual(Y_dt.full_tensor(), Y)
# Test 3: `None` placements for non-Tensor input argument
# Y = X * 2.0
local_mul_forward = local_map(
mul_forward,
in_placements=(row_wise, None),
out_placements=row_wise,
device_mesh=device_mesh,
)
Y = torch.mul(X, 2.0)
with comm_mode:
Y_dt = local_mul_forward(X_dt, 2.0)
self.assertEqual(comm_mode.get_total_counts(), 0)
for placement in Y_dt.placements:
self.assertTrue(placement.is_shard(dim=0))
self.assertEqual(Y_dt.full_tensor(), Y)
# Test 4: `None` placements for Tensor input argument
local_mm_forward = local_map(
mm_forward,
out_placements=None,
in_placements=(None, None),
device_mesh=device_mesh,
)
with comm_mode:
Y_dt_local = local_mm_forward(X_dt.to_local(), W_dt.to_local())
self.assertEqual(comm_mode.get_total_counts(), 0)
self.assertEqual(
DTensor.from_local(Y_dt_local, device_mesh, row_wise).full_tensor(),
torch.mm(X, W),
)
# Test 5: Some placements for Tensor input argument
local_mm_forward = local_map(
mm_forward,
out_placements=None,
in_placements=(replicate, row_wise),
device_mesh=device_mesh,
)
with comm_mode:
Y_dt_local = local_mm_forward(X_dt.to_local(), W_dt.to_local())
self.assertEqual(comm_mode.get_total_counts(), 0)
self.assertEqual(
DTensor.from_local(Y_dt_local, device_mesh, row_wise).full_tensor(),
torch.mm(X, W),
)
# Test 6: expect error - `None` placements for DTensor input argument
local_mm_forward = local_map(
mm_forward,
out_placements=row_wise,
in_placements=(row_wise, None),
device_mesh=device_mesh,
)
with self.assertRaisesRegex(AssertionError, "expects placements"):
Y_dt = local_mm_forward(X_dt, W_dt)
# check for `redistribute_inputs` handling
@with_comms
def test_local_map_redistribute(self):
device_mesh = init_device_mesh(
device_type=self.device_type, mesh_shape=(self.world_size,)
)
comm_mode = CommDebugMode()
# Y = X @ W
X = torch.randn(16, 8, device=self.device_type, requires_grad=False)
W = torch.randn(8, 12, device=self.device_type, requires_grad=False)
Y = torch.mm(X, W)
X_dt = distribute_tensor(
X, device_mesh, row_wise
) # row-wisely sharded X tensor which will be redistributed
W_dt = distribute_tensor(
W, device_mesh, col_wise
) # col-wisely sharded W tensor which will be redistributed
# Test 1: allow input redistribution
local_mm_allreduce_forward = local_map(
mm_allreduce_forward,
out_placements=replicate,
in_placements=(None, col_wise, row_wise),
device_mesh=device_mesh,
redistribute_inputs=True,
)
with comm_mode:
Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt)
# 2 for input redistribution and 1 for output
self.assertEqual(comm_mode.get_total_counts(), 3)
for placement in Y_dt.placements:
self.assertTrue(placement.is_replicate())
self.assertEqual(Y_dt.to_local(), Y)
# Test 2: no input redistribution is allowed
local_mm_allreduce_forward = local_map(
mm_allreduce_forward,
out_placements=replicate,
in_placements=(None, col_wise, row_wise),
device_mesh=device_mesh,
redistribute_inputs=False,
)
with self.assertRaisesRegex(ValueError, "set redistribute_inputs=True"):
Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt)
if __name__ == "__main__":
run_tests()
|