File: test_local_map.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (328 lines) | stat: -rw-r--r-- 11,660 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
from functools import partial

import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import (
    distribute_tensor,
    DTensor,
    init_device_mesh,
    Replicate,
    Shard,
)
from torch.distributed._tensor.experimental import local_map
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    with_comms,
)


funcol_py = torch.ops.c10d_functional


row_wise = [Shard(0)]  # row-wise sharding placements on 1-d mesh
col_wise = [Shard(1)]  # col-wise sharding placements on 1-d mesh
replicate = [Replicate()]  # replicate placements on 1-d mesh


def equal_allgather_forward(device_mesh, X, Y):
    eq = torch.tensor([torch.equal(X, Y)], device=X.device)
    eq_gather = funcol.all_gather_tensor(eq, 0, device_mesh)
    return torch.all(eq_gather).item()


def mm_all_gather_forward(device_mesh, A, B):
    local_mm_result = torch.mm(A, B)
    return funcol.all_gather_tensor(local_mm_result, 0, device_mesh).wait()


def mm_forward(A, B):  # no device mesh needed since we don't do collective
    return torch.mm(A, B)


def mm_allreduce_forward(device_mesh, A, B):
    partial_sum_tensor = torch.mm(A, B)
    return funcol.all_reduce(partial_sum_tensor, "sum", device_mesh).wait()


@partial(
    local_map,
    out_placements=replicate,
    in_placements=(None, col_wise, row_wise),
)
def mm_allreduce_forward_decorated(device_mesh, A, B):
    partial_sum_tensor = torch.mm(A, B)
    return funcol.all_reduce(partial_sum_tensor, "sum", device_mesh).wait()


def mul_forward(X, scalar):  # no device mesh needed since we don't do collective
    return torch.mul(X, scalar)


class TestLocalMap(DTensorTestBase):
    @property
    def world_size(self):
        return 2

    # simple correctness check
    @with_comms
    def test_local_map_correctness(self):
        device_mesh = init_device_mesh(
            device_type=self.device_type, mesh_shape=(self.world_size,)
        )
        comm_mode = CommDebugMode()

        # Y = X @ W
        X = torch.randn(16, 8, device=self.device_type, requires_grad=False)
        W = torch.randn(8, 12, device=self.device_type, requires_grad=False)
        Y = torch.mm(X, W)

        X_dt = distribute_tensor(
            X, device_mesh, col_wise
        )  # col-wisely sharded X tensor
        W_dt = distribute_tensor(
            W, device_mesh, row_wise
        )  # row-wisely sharded W tensor

        # Test 1: use the function returned from calling local_map
        # get the function wrapped with DTensor/Tensor convertion
        # mm_allreduce_forward is a function that applies to Tensors with manual collective
        # local_mm_allreduce_forward is the function that does the same but applies to
        # DTensors' `_local_tensor`.
        local_mm_allreduce_forward = local_map(
            mm_allreduce_forward,
            out_placements=replicate,
            in_placements=(None, col_wise, row_wise),
            device_mesh=device_mesh,
        )
        with comm_mode:
            Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt)

        # output redistribution to Replicate
        self.assertEqual(comm_mode.get_total_counts(), 1)
        # check output placements
        for placement in Y_dt.placements:
            self.assertTrue(placement.is_replicate())
        # check output value
        self.assertEqual(Y_dt.to_local(), Y)

        # Test 2: use the local_map decorator
        with comm_mode:
            Y_dt = mm_allreduce_forward_decorated(device_mesh, X_dt, W_dt)

        # output redistribution to Replicate
        self.assertEqual(comm_mode.get_total_counts(), 1)
        # check output placements
        for placement in Y_dt.placements:
            self.assertTrue(placement.is_replicate())
        # check output value
        self.assertEqual(Y_dt.to_local(), Y)

    # check for `out_placements`
    @with_comms
    def test_local_map_out_placements(self):
        # Test 1: wrap out into DTensor w/ `out_placements`
        device_mesh = init_device_mesh(
            device_type=self.device_type, mesh_shape=(self.world_size,)
        )
        comm_mode = CommDebugMode()

        # X.equal(Y)
        X = torch.randn(8, 8, device=self.device_type, requires_grad=False)
        Y = torch.randn(8, 8, device=self.device_type, requires_grad=False)
        X_dt = distribute_tensor(X, device_mesh, row_wise)
        Y_dt = distribute_tensor(Y, device_mesh, row_wise)
        local_equal_allgather_forward = local_map(
            equal_allgather_forward,
            out_placements=None,
        )
        with comm_mode:
            equal_dt = local_equal_allgather_forward(device_mesh, X_dt, Y_dt)  # a bool

        self.assertEqual(comm_mode.get_total_counts(), 1)
        self.assertTrue(not equal_dt)
        self.assertTrue(not (X.equal(Y)))

        # Test 2: directly return out if no argument is DTensor
        # matmul in DDP
        X = torch.randn(
            4 // self.world_size, 4, device=self.device_type, requires_grad=False
        )
        W = torch.randn(4, 4, device=self.device_type, requires_grad=False)
        local_mm_all_gather_forward = local_map(
            mm_all_gather_forward,
            out_placements=row_wise,
            in_placements=(None, row_wise, replicate),
        )
        with comm_mode:
            Y = local_mm_all_gather_forward(device_mesh, X, W)

        self.assertEqual(comm_mode.get_total_counts(), 1)
        self.assertEqual(
            comm_mode.get_comm_counts()[funcol_py.all_gather_into_tensor], 1
        )
        X_replicate = funcol.all_gather_tensor(X, 0, device_mesh).wait()
        Y_replicate = torch.mm(X_replicate, W)
        self.assertEqual(Y, Y_replicate)  # Y is a torch.Tensor

    # check for `in_placements` handling
    @with_comms
    def test_local_map_in_placements(self):
        device_mesh = init_device_mesh(
            device_type=self.device_type, mesh_shape=(self.world_size,)
        )
        comm_mode = CommDebugMode()

        # Y = X @ W
        X = torch.randn(16, 8, device=self.device_type, requires_grad=False)
        W = torch.randn(8, 12, device=self.device_type, requires_grad=False)
        Y = torch.mm(X, W)

        X_dt = distribute_tensor(
            X, device_mesh, row_wise
        )  # row-wisely sharded X tensor
        W_dt = distribute_tensor(W, device_mesh, replicate)  # replicate W tensor

        # Test 1: explicitly pass `in_placements`
        local_mm_forward = local_map(
            mm_forward,
            out_placements=row_wise,
            in_placements=(row_wise, replicate),
            device_mesh=device_mesh,
        )
        with comm_mode:
            Y_dt = local_mm_forward(X_dt, W_dt)

        # no communication should occur in this case
        self.assertEqual(comm_mode.get_total_counts(), 0)
        for placement in Y_dt.placements:
            self.assertTrue(placement.is_shard(dim=0))
        self.assertEqual(Y_dt.full_tensor(), Y)

        # Test 2: `in_placements=None`
        local_mm_forward = local_map(
            mm_forward,
            out_placements=row_wise,
            device_mesh=device_mesh,
        )
        with comm_mode:
            Y_dt = local_mm_forward(X_dt, W_dt)

        self.assertEqual(comm_mode.get_total_counts(), 0)
        for placement in Y_dt.placements:
            self.assertTrue(placement.is_shard(dim=0))
        self.assertEqual(Y_dt.full_tensor(), Y)

        # Test 3: `None` placements for non-Tensor input argument
        # Y = X * 2.0
        local_mul_forward = local_map(
            mul_forward,
            in_placements=(row_wise, None),
            out_placements=row_wise,
            device_mesh=device_mesh,
        )
        Y = torch.mul(X, 2.0)
        with comm_mode:
            Y_dt = local_mul_forward(X_dt, 2.0)

        self.assertEqual(comm_mode.get_total_counts(), 0)
        for placement in Y_dt.placements:
            self.assertTrue(placement.is_shard(dim=0))
        self.assertEqual(Y_dt.full_tensor(), Y)

        # Test 4: `None` placements for Tensor input argument
        local_mm_forward = local_map(
            mm_forward,
            out_placements=None,
            in_placements=(None, None),
            device_mesh=device_mesh,
        )
        with comm_mode:
            Y_dt_local = local_mm_forward(X_dt.to_local(), W_dt.to_local())

        self.assertEqual(comm_mode.get_total_counts(), 0)
        self.assertEqual(
            DTensor.from_local(Y_dt_local, device_mesh, row_wise).full_tensor(),
            torch.mm(X, W),
        )

        # Test 5: Some placements for Tensor input argument
        local_mm_forward = local_map(
            mm_forward,
            out_placements=None,
            in_placements=(replicate, row_wise),
            device_mesh=device_mesh,
        )
        with comm_mode:
            Y_dt_local = local_mm_forward(X_dt.to_local(), W_dt.to_local())

        self.assertEqual(comm_mode.get_total_counts(), 0)
        self.assertEqual(
            DTensor.from_local(Y_dt_local, device_mesh, row_wise).full_tensor(),
            torch.mm(X, W),
        )

        # Test 6: expect error - `None` placements for DTensor input argument
        local_mm_forward = local_map(
            mm_forward,
            out_placements=row_wise,
            in_placements=(row_wise, None),
            device_mesh=device_mesh,
        )
        with self.assertRaisesRegex(AssertionError, "expects placements"):
            Y_dt = local_mm_forward(X_dt, W_dt)

    # check for `redistribute_inputs` handling
    @with_comms
    def test_local_map_redistribute(self):
        device_mesh = init_device_mesh(
            device_type=self.device_type, mesh_shape=(self.world_size,)
        )
        comm_mode = CommDebugMode()

        # Y = X @ W
        X = torch.randn(16, 8, device=self.device_type, requires_grad=False)
        W = torch.randn(8, 12, device=self.device_type, requires_grad=False)
        Y = torch.mm(X, W)

        X_dt = distribute_tensor(
            X, device_mesh, row_wise
        )  # row-wisely sharded X tensor which will be redistributed
        W_dt = distribute_tensor(
            W, device_mesh, col_wise
        )  # col-wisely sharded W tensor which will be redistributed

        # Test 1: allow input redistribution
        local_mm_allreduce_forward = local_map(
            mm_allreduce_forward,
            out_placements=replicate,
            in_placements=(None, col_wise, row_wise),
            device_mesh=device_mesh,
            redistribute_inputs=True,
        )
        with comm_mode:
            Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt)

        # 2 for input redistribution and 1 for output
        self.assertEqual(comm_mode.get_total_counts(), 3)
        for placement in Y_dt.placements:
            self.assertTrue(placement.is_replicate())
        self.assertEqual(Y_dt.to_local(), Y)

        # Test 2: no input redistribution is allowed
        local_mm_allreduce_forward = local_map(
            mm_allreduce_forward,
            out_placements=replicate,
            in_placements=(None, col_wise, row_wise),
            device_mesh=device_mesh,
            redistribute_inputs=False,
        )
        with self.assertRaisesRegex(ValueError, "set redistribute_inputs=True"):
            Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt)


if __name__ == "__main__":
    run_tests()