1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
class MyModel(nn.Module):
def __init__(self, n_features, n_layers, device):
super().__init__()
self.seq = nn.Sequential(
*[nn.Linear(n_features, n_features, device=device) for _ in range(n_layers)]
)
def forward(self, x):
return self.seq(x)
def reset_parameters(self):
for m in self.seq:
m.reset_parameters()
class DTensorAPITest(DTensorTestBase):
@property
def world_size(self) -> int:
# hard code world size to 4 as we need to test
# at least with 2d mesh
return 4
@with_comms
def test_distribute_tensor(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
shard_spec = [Shard(0)]
for requires_grad in [True, False]:
tensor_to_shard = torch.randn(
3 * self.world_size, 3, requires_grad=requires_grad
)
dist_tensor = distribute_tensor(tensor_to_shard, device_mesh, shard_spec)
self.assertEqual(dist_tensor.size(), torch.Size([3 * self.world_size, 3]))
local_tensor = dist_tensor.to_local()
self.assertEqual(local_tensor.size(), torch.Size([3, 3]))
if requires_grad:
self.assertTrue(dist_tensor.requires_grad)
self.assertTrue(dist_tensor.is_leaf)
# test negative dim
shard_minus_spec = [Shard(-1)]
tensor_to_shard = torch.randn(3, 3 * self.world_size)
dist_tensor = distribute_tensor(tensor_to_shard, device_mesh, shard_minus_spec)
self.assertEqual(dist_tensor.placements[0].dim, 1)
@with_comms
def test_distribute_tensor_errors(self):
device_mesh = DeviceMesh(
self.device_type, torch.arange(self.world_size).reshape(2, 2)
)
tensor_shape = [3 * self.world_size, 3 * self.world_size]
tensor_to_distribute = torch.randn(*tensor_shape)
with self.assertRaisesRegex(ValueError, "must have the same length"):
shard_spec = [Shard(0)]
distribute_tensor(tensor_to_distribute, device_mesh, shard_spec)
with self.assertRaisesRegex(RuntimeError, "distribute leaf tensor"):
shard_spec = [Shard(0)]
global_tensor = torch.randn(*tensor_shape, requires_grad=True)
global_tensor_to_distribute = global_tensor + 2
distribute_tensor(global_tensor_to_distribute, device_mesh, shard_spec)
spec = [Shard(0), Shard(1)]
dtensor = distribute_tensor(tensor_to_distribute, device_mesh, spec)
with self.assertRaisesRegex(ValueError, "to a different device mesh"):
new_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
distribute_tensor(dtensor, new_mesh, [Shard(0)])
with self.assertRaisesRegex(ValueError, "to a different placements"):
new_spec = [Shard(0), Replicate()]
distribute_tensor(dtensor, device_mesh, new_spec)
@with_comms
def test_distribute_tensor_uneven_sharding(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
input_sizes_and_shard_dims = [
((self.world_size * 3 + 1, 3, 3), 0),
((self.world_size * 3 + 2, 3, 3), 0),
((3, self.world_size * 3 + 1, 3), 1),
((3, self.world_size * 3 + 2, 3), 1),
((3, 3, self.world_size * 3 + 1), 2),
((3, 3, self.world_size * 3 + 2), 2),
]
for input_size, shard_dim in input_sizes_and_shard_dims:
shard_spec = [Shard(shard_dim)]
tensor_to_shard = torch.randn(input_size)
splitted_tensor_list = list(
torch.chunk(tensor_to_shard, self.world_size, dim=shard_dim)
)
dist_tensor = distribute_tensor(tensor_to_shard, device_mesh, shard_spec)
self.assertEqual(dist_tensor.size(), torch.Size(input_size))
local_tensor = dist_tensor.to_local()
self.assertEqual(local_tensor, splitted_tensor_list[self.rank])
@with_comms
def test_distribute_module(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
# fully shard all linear modules on dim 0
module_to_shard = MyModel(5 * self.world_size, 20, device=self.device_type)
shard_spec = [Shard(0)]
def shard_fn(name, module, device_mesh):
if isinstance(module, nn.Linear):
for name, param in module.named_parameters():
dist_param = torch.nn.Parameter(
distribute_tensor(param, device_mesh, shard_spec)
)
module.register_parameter(name, dist_param)
sharded_module = distribute_module(module_to_shard, device_mesh, shard_fn)
for param in sharded_module.parameters():
self.assertIsInstance(param, DTensor)
self.assertEqual(param.placements, shard_spec)
replica_spec = [Replicate()]
# fully replicate all modules without passing in partition_fn
module_to_replicate = MyModel(5, 20, device=self.device_type)
replica_module = distribute_module(module_to_replicate, device_mesh)
for param in replica_module.parameters():
self.assertIsInstance(param, DTensor)
self.assertEqual(param.placements, replica_spec)
# fully replicate all modules by passing in partition_fn
def replicate_fn(name, module, device_mesh):
if isinstance(module, nn.Linear):
for name, param in module.named_parameters():
dist_param = torch.nn.Parameter(
distribute_tensor(param, device_mesh, replica_spec)
)
module.register_parameter(name, dist_param)
module_to_replicate = MyModel(5, 20, device=self.device_type)
replica_module = distribute_module(
module_to_replicate, device_mesh, replicate_fn
)
for param in replica_module.parameters():
self.assertIsInstance(param, DTensor)
self.assertEqual(param.placements, replica_spec)
# only shard part of module, and rest of module should be replicate
def shard_fn(name, module, device_mesh):
if isinstance(module, nn.Linear) and (name == "seq.0" or name == "seq.8"):
for name, param in module.named_parameters():
dist_param = torch.nn.Parameter(
distribute_tensor(param, device_mesh, shard_spec)
)
module.register_parameter(name, dist_param)
module_to_distribute = MyModel(5 * self.world_size, 20, device=self.device_type)
dist_module = distribute_module(module_to_distribute, device_mesh, shard_fn)
for name, param in dist_module.named_parameters():
self.assertIsInstance(param, DTensor)
if name.startswith(("seq.0", "seq.8")):
self.assertEqual(param.placements, shard_spec)
else:
self.assertEqual(param.placements, replica_spec)
@with_comms
def test_distribute_module_input_fn_output_fn(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
# fully replicate all linear modules
module_to_replicate = MyModel(20, 1, device=self.device_type)
# mark input sharding on dim 0
def input_fn(mod, inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Shard(0)])
def output_fn(mod, outputs, device_mesh):
assert isinstance(outputs, DTensor)
return outputs.to_local()
replica_module = distribute_module(
module_to_replicate,
device_mesh,
input_fn=input_fn,
output_fn=output_fn,
)
input_tensor = torch.randn(5, 20, device=self.device_type)
local_out = replica_module(input_tensor)
self.assertIsInstance(local_out, torch.Tensor)
self.assertNotIsInstance(local_out, DTensor)
# full replicate (even on inputs)
model = MyModel(10, 10, device=self.device_type)
def replicate_input_fn(mod, inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Replicate()])
replica_model = distribute_module(
model,
device_mesh,
input_fn=replicate_input_fn,
)
input = torch.randn(10, 10, requires_grad=True)
output = replica_model(input)
output.sum().backward()
param_grad = next(iter(replica_model.parameters())).grad
self.assertTrue(isinstance(param_grad, DTensor))
self.assertTrue(isinstance(param_grad.placements[0], Replicate))
@with_comms
def test_distribute_module_input_fn_output_fn_warning(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
# fully replicate all linear modules
module_to_replicate = MyModel(20, 1, device=self.device_type)
# mark input sharding on dim 0
def input_fn(inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Shard(0)])
def output_fn(outputs, device_mesh):
assert isinstance(outputs, DTensor)
return outputs.to_local()
with self.assertWarnsRegex(FutureWarning, "Deprecating"):
replica_module = distribute_module(
module_to_replicate,
device_mesh,
input_fn=input_fn,
output_fn=output_fn,
)
input_tensor = torch.randn(5, 20, device=self.device_type)
local_out = replica_module(input_tensor)
self.assertIsInstance(local_out, torch.Tensor)
self.assertNotIsInstance(local_out, DTensor)
@with_comms
def test_distribute_module_casting(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
# check DTensor casting
dt = DTensor.from_local(torch.rand(10), device_mesh, [Replicate()])
dt = dt.to(torch.bfloat16)
self.assertEqual(dt.dtype, torch.bfloat16)
self.assertEqual(dt._local_tensor.dtype, torch.bfloat16)
# check distribute_tensor casting
dt = distribute_tensor(torch.rand(10), device_mesh, [Replicate()])
dt = dt.to(torch.bfloat16)
self.assertEqual(dt.dtype, torch.bfloat16)
self.assertEqual(dt._local_tensor.dtype, torch.bfloat16)
# check distribute_module casting
model = MyModel(10, 10, device=self.device_type)
replica_model = distribute_module(
model,
device_mesh,
)
replica_model = replica_model.to(torch.bfloat16)
self.assertEqual(replica_model.seq[0].weight.dtype, torch.bfloat16)
self.assertEqual(
replica_model.seq[0].weight._local_tensor.dtype, torch.bfloat16
)
# check autocast
dt = distribute_tensor(torch.rand(10), device_mesh, [Replicate()])
replica_model = distribute_module(
model,
device_mesh,
)
with torch.autocast(device_type=self.device_type, dtype=torch.bfloat16):
output = replica_model(dt)
self.assertEqual(output.dtype, torch.bfloat16)
@with_comms
def test_distribute_module_meta(self):
# If the model is too big, the user may first the create entire model on the meta device and then initialize
# it on the device in the partition function.
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
# fully shard all parameters on dim 0
module_to_shard = MyModel(5 * self.world_size, 20, device="meta")
shard_spec = [Shard(0)]
def shard_fn(name, module, device_mesh):
for param_name, param in module._parameters.items():
dist_param = distribute_tensor(param, device_mesh, shard_spec)
dist_param = torch.empty_like(
dist_param, device=device_mesh.device_type
)
module.register_parameter(param_name, torch.nn.Parameter(dist_param))
sharded_module = distribute_module(module_to_shard, device_mesh, shard_fn)
for param in sharded_module.parameters():
self.assertIsInstance(param, DTensor)
self.assertFalse(param.is_meta)
self.assertTrue(param.device.type == device_mesh.device_type)
if __name__ == "__main__":
run_tests()
|