File: test_attention.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (393 lines) | stat: -rw-r--r-- 13,511 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import unittest

import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import nn
from torch.distributed._tensor import DeviceMesh
from torch.distributed._tensor.experimental._attention import (
    _AttentionContextParallel,
    _CausalBehavior,
    _cp_options,
    _is_causal_behavior,
    _RotateMethod,
    context_parallel,
    context_parallel_unshard,
    set_rotate_method,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import parallelize_module
from torch.nn.attention import sdpa_kernel, SDPBackend
from torch.testing._internal.common_cuda import (
    PLATFORM_SUPPORTS_FLASH_ATTENTION,
    PLATFORM_SUPPORTS_FUSED_ATTENTION,
    PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
    decorateIf,
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    skipIfRocm,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    ModelArgs,
    Transformer,
    with_comms,
)


c10d_functional = torch.ops.c10d_functional
backends = []
if PLATFORM_SUPPORTS_FLASH_ATTENTION:
    backends.append(SDPBackend.FLASH_ATTENTION)
if PLATFORM_SUPPORTS_MEM_EFF_ATTENTION:
    backends.append(SDPBackend.EFFICIENT_ATTENTION)


rotater_enum_to_str = {
    _RotateMethod.ALL_GATHER: "allgather",
    _RotateMethod.ALL_TO_ALL: "alltoall",
}  # mapping from _RotateMethod enum to string


class RingAttentionTest(DTensorTestBase):
    @property
    def world_size(self) -> int:
        return torch.cuda.device_count()

    @skip_if_lt_x_gpu(2)
    @skipIfRocm  # Missing _c10d_functional_autograd::all_to_all_single
    @unittest.skipIf(
        not PLATFORM_SUPPORTS_FUSED_ATTENTION,
        "Does not support flash nor efficient attention",
    )
    @with_comms
    @decorateIf(
        unittest.skip, lambda params: params["load_balance"] and not params["is_causal"]
    )
    @parametrize("is_causal", [True, False])
    @parametrize("compiled", [True, False])
    @parametrize("backend", backends)
    @parametrize("load_balance", [True, False])
    @parametrize("rotater", [_RotateMethod.ALL_TO_ALL, _RotateMethod.ALL_GATHER])
    def test_ring_attention_sdpa(
        self,
        is_causal: bool,
        compiled: bool,
        backend: SDPBackend,
        load_balance: bool,
        rotater: _RotateMethod,
    ) -> None:
        set_rotate_method(rotater_enum_to_str[rotater])
        self.assertEqual(_cp_options.rotate_method, rotater)
        device_mesh = DeviceMesh(self.device_type, torch.arange(0, self.world_size))
        dtype = torch.bfloat16
        bs = 8
        query_tokens = 64
        context_tokens = 64
        dim = 32
        nheads = 8
        torch.manual_seed(10)
        dtype = (
            torch.bfloat16 if backend == SDPBackend.FLASH_ATTENTION else torch.float32
        )

        _cp_options.enable_load_balance = load_balance

        q = torch.rand(
            (bs, nheads, self.world_size * query_tokens, dim),
            device=self.device_type,
            dtype=dtype,
            requires_grad=True,
        )
        k = torch.rand(
            (bs, nheads, self.world_size * context_tokens, dim),
            device=self.device_type,
            dtype=dtype,
            requires_grad=True,
        )
        v = torch.rand(
            (bs, nheads, self.world_size * context_tokens, dim),
            device=self.device_type,
            dtype=dtype,
            requires_grad=True,
        )

        # Ensure all ranks have the same initialization data.
        with torch.no_grad():
            dist.broadcast(q, src=0)
            dist.broadcast(k, src=0)
            dist.broadcast(v, src=0)

        with sdpa_kernel(backend):
            out = F.scaled_dot_product_attention(q, k, v, is_causal=is_causal)
            out.sum().backward()

        cp_q = q.detach().clone()
        cp_k = k.detach().clone()
        cp_v = v.detach().clone()
        # Theoretically, context_parallel() should not be used to shard
        # parameters because when require_grad is True, resize_ is not
        # allowed. But requires_grad of cp_q, cp_k, and cp_v are False
        # now. So we can just use context_parallel() to shard q, k, v.
        # In reality, context_paralle() should be used to shard the input.
        with context_parallel(
            device_mesh, buffers=(cp_q, cp_k, cp_v), buffer_seq_dims=(2, 2, 2)
        ):
            cp_q.requires_grad = True
            cp_k.requires_grad = True
            cp_v.requires_grad = True
            with CommDebugMode() as comm_mode:
                with sdpa_kernel(backend):
                    if compiled:
                        fn = torch.compile(
                            F.scaled_dot_product_attention,
                            fullgraph=True,
                            backend="aot_eager",
                        )
                    else:
                        fn = F.scaled_dot_product_attention

                    cp_out = fn(cp_q, cp_k, cp_v, is_causal=is_causal)
                    cp_out.sum().backward()

                    if not compiled and rotater == _RotateMethod.ALL_TO_ALL:
                        # Compiler and CommDebugMode do not work well together.
                        self.assertDictEqual(
                            comm_mode.get_comm_counts(),
                            {
                                c10d_functional.all_to_all_single: self.world_size * 3
                                - 2
                            },
                        )

            # Due to numerical error, we need to choose different atol for different
            # attention kernels
            cp_out, cp_dq, cp_dk, cp_dv = context_parallel_unshard(
                device_mesh,
                [cp_out, cp_q.grad, cp_k.grad, cp_v.grad],
                [2, 2, 2, 2],
            )
            atol = (
                1e-08
                if backend == SDPBackend.EFFICIENT_ATTENTION
                else 1e-3 * self.world_size
            )
            self.assertTrue(torch.allclose(out, cp_out, atol=atol))

            atol = (
                2e-06
                if backend == SDPBackend.EFFICIENT_ATTENTION
                else 8e-3 * self.world_size
            )
            self.assertTrue(torch.allclose(q.grad, cp_dq, atol=atol))
            self.assertTrue(torch.allclose(k.grad, cp_dk, atol=atol))
            self.assertTrue(torch.allclose(v.grad, cp_dv, atol=atol))

            cp_q.grad = None
            cp_k.grad = None
            cp_v.grad = None
            cp_q.requires_grad = False
            cp_k.requires_grad = False
            cp_v.requires_grad = False

    def test_is_causal_behavior(self) -> None:
        _cp_options.enable_load_balance = False
        self.assertEqual(
            _is_causal_behavior(rank=0, world_size=4, i=0, is_causal=False),
            _CausalBehavior.NOT_IS_CAUSAL,
        )

        ranks = [
            [_CausalBehavior.IS_CAUSAL, _CausalBehavior.SKIP],
            [_CausalBehavior.IS_CAUSAL, _CausalBehavior.NOT_IS_CAUSAL],
        ]
        for rank, iters in enumerate(ranks):
            for i, behavior in enumerate(iters):
                self.assertEqual(
                    _is_causal_behavior(rank=rank, world_size=2, i=i, is_causal=True),
                    behavior,
                )

        _cp_options.enable_load_balance = True
        ranks = [
            [_CausalBehavior.IS_CAUSAL, _CausalBehavior.NOT_IS_CAUSAL],
            [_CausalBehavior.IS_CAUSAL, _CausalBehavior.NOT_IS_CAUSAL],
        ]
        for rank, iters in enumerate(ranks):
            for i, behavior in enumerate(iters):
                self.assertEqual(
                    _is_causal_behavior(rank=rank, world_size=2, i=i, is_causal=True),
                    behavior,
                )

    @skip_if_lt_x_gpu(2)
    @unittest.skipIf(
        not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support flash attention"
    )
    @with_comms
    @sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION])
    @parametrize("is_causal", [True, False])
    @parametrize("rotater", [_RotateMethod.ALL_GATHER, _RotateMethod.ALL_TO_ALL])
    def test_ring_attention_native_transformer(
        self, is_causal: bool, rotater: _RotateMethod
    ) -> None:
        _cp_options.enable_load_balance = is_causal
        set_rotate_method(rotater_enum_to_str[rotater])
        self.assertEqual(_cp_options.rotate_method, rotater)
        device_mesh = DeviceMesh(
            self.device_type,
            torch.arange(0, self.world_size),
        )
        dtype = torch.bfloat16
        bs = 8
        ntokens = 8
        dim = 32
        nheads = 8
        num_layers = 2

        encoder_layer = nn.TransformerEncoderLayer(
            d_model=dim,
            nhead=nheads,
            dim_feedforward=dim,
            batch_first=True,
        ).to(dtype)
        encoder_layer = parallelize_module(
            module=encoder_layer,
            device_mesh=device_mesh,
            parallelize_plan={
                "self_attn": _AttentionContextParallel(),
            },
        )
        model = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
        model = model.to(self.device_type).to(dtype)

        mask = (
            nn.Transformer.generate_square_subsequent_mask(
                ntokens, device=self.device_type, dtype=dtype
            )
            if is_causal
            else None
        )
        seq = torch.rand((bs, ntokens, dim), device=self.device_type, dtype=dtype)

        with CommDebugMode() as comm_mode:
            out = model(seq, mask=mask, is_causal=is_causal)

        if rotater == _RotateMethod.ALL_TO_ALL:
            self.assertDictEqual(
                comm_mode.get_comm_counts(),
                {
                    c10d_functional.all_to_all_single: (self.world_size - 1)
                    * num_layers,
                },
            )
        else:
            self.assertDictEqual(
                comm_mode.get_comm_counts(),
                {
                    c10d_functional.all_gather_into_tensor: num_layers,
                },
            )

        with CommDebugMode() as comm_mode:
            out.sum().backward()

        if rotater == _RotateMethod.ALL_TO_ALL:
            self.assertDictEqual(
                comm_mode.get_comm_counts(),
                {
                    c10d_functional.all_to_all_single: (self.world_size * 2 - 1)
                    * num_layers,
                },
            )
        else:
            self.assertDictEqual(
                comm_mode.get_comm_counts(),
                {
                    c10d_functional.all_gather_into_tensor: num_layers,
                    c10d_functional.all_to_all_single: self.world_size * num_layers,
                },
            )

    @skip_if_lt_x_gpu(2)
    @unittest.skipIf(
        not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support flash attention"
    )
    @with_comms
    @sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION])
    @parametrize("rotater", [_RotateMethod.ALL_GATHER, _RotateMethod.ALL_TO_ALL])
    def test_ring_attention_custom_transformer(self, rotater: _RotateMethod) -> None:
        set_rotate_method(rotater_enum_to_str[rotater])
        self.assertEqual(_cp_options.rotate_method, rotater)
        device_mesh = DeviceMesh(
            self.device_type,
            torch.arange(0, self.world_size),
        )
        dtype = torch.bfloat16
        bs = 2
        args = ModelArgs()

        model = Transformer(args).to(dtype).to(self.device_type)

        model = parallelize_module(
            module=model,
            device_mesh=device_mesh,
            parallelize_plan={
                f"layers.{i}.attention": _AttentionContextParallel()
                for i in range(args.n_layers)
            },
        )

        seq = torch.randint(
            args.vocab_size, (bs, args.max_seq_len), device=self.device_type
        )

        with CommDebugMode() as comm_mode:
            out = model(seq)

        if rotater == _RotateMethod.ALL_TO_ALL:
            self.assertDictEqual(
                comm_mode.get_comm_counts(),
                {
                    c10d_functional.all_to_all_single: (self.world_size - 1)
                    * args.n_layers,
                },
            )
        else:
            self.assertDictEqual(
                comm_mode.get_comm_counts(),
                {c10d_functional.all_gather_into_tensor: args.n_layers},
            )

        with CommDebugMode() as comm_mode:
            out.sum().backward()

        if rotater == _RotateMethod.ALL_TO_ALL:
            self.assertDictEqual(
                comm_mode.get_comm_counts(),
                {
                    c10d_functional.all_to_all_single: (self.world_size * 2 - 1)
                    * args.n_layers,
                },
            )
        else:
            self.assertDictEqual(
                comm_mode.get_comm_counts(),
                {
                    c10d_functional.all_gather_into_tensor: args.n_layers,
                    c10d_functional.all_to_all_single: self.world_size * args.n_layers,
                },
            )


if backends:
    instantiate_parametrized_tests(RingAttentionTest)

if __name__ == "__main__":
    run_tests()