1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import torch
from torch.distributed._tensor import DeviceMesh
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.tensor._op_schema import OpSchema
from torch.distributed.tensor._ops._common_rules import einop_rule, pointwise_rule
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
aten = torch.ops.aten
class CommonRulesTest(DTensorTestBase):
@property
def world_size(self) -> int:
# hard code world size to 4 as we need to test
# at least with 2d mesh
return 4
def _gen_tensor_meta(self, shape):
empty_tensor = torch.empty(shape)
return TensorMeta(
empty_tensor.shape,
empty_tensor.stride(),
empty_tensor.dtype,
)
@with_comms
def test_einop_basic_propagation(self):
# plain einsum, mm
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
mm_call = aten.mm.default
# propagate col-wise sharding
mat1, mat2 = [-1, -1], [-1, 0]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 4]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([4, 8]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = einop_rule(
"mk,kn->mn", OpSchema(mm_call, (mat1_spec, mat2_spec), {})
)
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertEqual(output_spec.dim_map, [-1, 0])
# propagate row-wise sharding
mat1, mat2 = [0, -1], [-1, -1]
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = einop_rule(
"mk,kn->mn", OpSchema(mm_call, (mat1_spec, mat2_spec), {})
)
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertEqual(output_spec.dim_map, [0, -1])
# generate partial
mat1, mat2 = [-1, 0], [0, -1]
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = einop_rule(
"mk,kn->mn", OpSchema(mm_call, (mat1_spec, mat2_spec), {})
)
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertTrue(output_spec.placements[0].is_partial())
@with_comms
def test_einop_pointwise_propagation(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
add_call = aten.add.Tensor
# addition
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 8]))
mat1 = [0, -1]
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
output_sharding = einop_rule(
"ij,ij->ij", OpSchema(add_call, (mat1_spec, mat1_spec), {})
)
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertEqual(output_spec.dim_map, [0, -1])
# broadcast addition
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 8]))
mat1 = [-1, 0, -1]
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([2]))
mat2_spec = DTensorSpec.from_dim_map(
mesh, [-1], [], tensor_meta=mat2_tensor_meta
)
output_sharding = einop_rule(
"ijk,k->ijk", OpSchema(add_call, (mat1_spec, mat2_spec), {})
)
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertEqual(output_spec.dim_map, [-1, 0, -1])
# broadcast to a common shape
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 8, 8]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([1, 8]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, [0, -1, -1], [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, [-1, -1], [], tensor_meta=mat2_tensor_meta
)
output_sharding = einop_rule(
"ijk,1k->ijk", OpSchema(add_call, (mat1_spec, mat2_spec), {})
)
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertEqual(output_spec.dim_map, [0, -1, -1])
@with_comms
def test_einop_merge_sharding(self):
# 2d mesh einop merge sharding
mesh_shape = torch.arange(self.world_size).reshape(
self.world_size // 2, self.world_size // 2
)
mesh = DeviceMesh(self.device_type, mesh_shape)
mm_call = aten.mm.default
mat1, mat2 = [0, -1], [-1, 1]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 4]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([4, 8]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = einop_rule(
"mk,kn->mn", OpSchema(mm_call, (mat1_spec, mat2_spec), {})
)
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertEqual(output_spec.dim_map, [0, 1])
@with_comms
def test_einop_linearity(self):
mesh_shape = torch.arange(self.world_size).reshape(
self.world_size // 2, self.world_size // 2
)
mesh = DeviceMesh(self.device_type, mesh_shape)
mm_call = aten.mm.default
mat1, mat2 = [0, -1], [-1, -1]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 4]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([4, 8]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [1], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
# if not turn on linearity, partial sum is not eligible to propagate, we return
# suggestion to reshard inputs with no partial sum (i.e. all_reduce one input)
output_sharding = einop_rule(
"mk,kn->mn", OpSchema(mm_call, (mat1_spec, mat2_spec), {})
)
self.assertIsNone(output_sharding.output_spec)
suggestions = output_sharding.redistribute_schema
self.assertIsNotNone(suggestions)
suggested_spec = suggestions.args_schema[0]
self.assertFalse(suggested_spec.placements[1].is_partial())
# einop prop with linearity on mm, should give back suggestion
# on converting placements to partial
output_sharding = einop_rule(
"mk,kn->mn",
OpSchema(mm_call, (mat1_spec, mat2_spec), {}),
linearity=True,
)
self.assertIsNone(output_sharding.output_spec)
suggestions = output_sharding.redistribute_schema
self.assertIsNotNone(suggestions)
mat2_spec = suggestions.args_schema[1]
# mat2 mesh dim 1 should become partial now!
self.assertTrue(mat2_spec.placements[1].is_partial())
# einop prop with linearity on point-wise, should give back suggestion
# on converting placements to partial
add_call = aten.add.Tensor
mat1, mat2 = [0, -1], [0, -1]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 6]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([8, 6]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [1], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = einop_rule(
"ij,ij->ij",
OpSchema(add_call, (mat1_spec, mat2_spec), {}),
linearity=True,
)
self.assertIsNone(output_sharding.output_spec)
suggestions = output_sharding.redistribute_schema
self.assertIsNotNone(suggestions)
mat2_spec = suggestions.args_schema[1]
# mat2 mesh dim 1 should become partial now!
self.assertTrue(mat2_spec.placements[1].is_partial())
@with_comms
def test_einop_multi_sharding_on_mesh_dim(self):
# einop prop with multi sharding on same mesh dim
mesh_shape = torch.arange(self.world_size)
mesh = DeviceMesh(self.device_type, mesh_shape)
mm_call = aten.mm.default
mat1, mat2 = [0, -1], [0, -1]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 12]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([12, 4]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = einop_rule(
"mk,kn->mn", OpSchema(mm_call, (mat1_spec, mat2_spec), {})
)
output_spec = output_sharding.output_spec
self.assertIsNone(output_spec)
self.assertIsNotNone(output_sharding.redistribute_schema)
# ensure that the suggestion is to reshard the second
# arg by all_gather its tensor dim sharding
schema_suggestion = output_sharding.redistribute_schema
self.assertEqual(schema_suggestion.args_schema[0].dim_map, [0, -1])
self.assertEqual(schema_suggestion.args_schema[1].dim_map, [-1, -1])
@with_comms
def test_einop_errors(self):
mesh_shape = torch.arange(self.world_size).reshape(
self.world_size // 2, self.world_size // 2
)
mesh = DeviceMesh(self.device_type, mesh_shape)
add_call = aten.add.Tensor
mat1, mat2 = [0, -1], [1, -1]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 4]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([8, 4]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
with self.assertRaisesRegex(RuntimeError, "sharded two different ways:"):
einop_rule("ij,ij->ij", OpSchema(add_call, (mat1_spec, mat2_spec), {}))
@with_comms
def test_pointwise_rules_broadcasting(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
where_call = aten.where.self
inp1, inp2, inp3 = [0], [], [-1, -1]
inp1_tensor_meta = self._gen_tensor_meta(torch.Size([8]))
inp2_tensor_meta = self._gen_tensor_meta(torch.Size([]))
inp3_tensor_meta = self._gen_tensor_meta(torch.Size([1, 1]))
condition = DTensorSpec.from_dim_map(
mesh, inp1, [], tensor_meta=inp1_tensor_meta
)
self_tensor = DTensorSpec.from_dim_map(
mesh, inp2, [], tensor_meta=inp2_tensor_meta
)
other_tensor = DTensorSpec.from_dim_map(
mesh, inp3, [], tensor_meta=inp3_tensor_meta
)
# propagate point-wise sharding with broadcasting
output_sharding = pointwise_rule(
OpSchema(where_call, (condition, self_tensor, other_tensor), {})
)
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertEqual(output_spec.dim_map, [-1, 0])
@with_comms
def test_pointwise_rules_suggestion(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
lerp_call = aten.lerp.Scalar
# propagate point-wise sharding
inp1, inp2 = [-1, -1], [-1, 0]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([8, 4]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([8, 4]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, inp1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, inp2, [], tensor_meta=mat2_tensor_meta
)
# adding a positional argument -1 to arg schema
output_sharding = pointwise_rule(
OpSchema(lerp_call, (mat1_spec, mat2_spec, -1), {})
)
self.assertIsNone(output_sharding.output_spec)
self.assertIsNotNone(output_sharding.redistribute_schema)
# ensure that the suggestion from pointwise rules still have
# the positional args that are not DTensorSpec
schema_suggestion = output_sharding.redistribute_schema
self.assertEqual(len(schema_suggestion.args_schema), 3)
self.assertEqual(schema_suggestion.args_schema[2], -1)
@with_comms
def test_pointwise_multi_sharding_on_mesh_dim(self):
# 2d mesh pointwise sharding
mesh_shape = torch.arange(self.world_size).reshape(
self.world_size // 2, self.world_size // 2
)
mesh = DeviceMesh(self.device_type, mesh_shape)
add_call = aten.add.Tensor
# basic case to test implicit broadcasting shape alignment
mat1, mat2 = [-1, 0], [0]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([20, 6]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([6]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = pointwise_rule(OpSchema(add_call, (mat1_spec, mat2_spec), {}))
output_spec = output_sharding.output_spec
self.assertIsNotNone(output_spec)
self.assertEqual(output_spec.dim_map, [-1, 0])
# more advanced case that needs reshard one input to align sharding
mat1, mat2 = [0, -1, -1, 1], [0, -1, 1]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([12, 1, 1, 8]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([12, 4, 8]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = pointwise_rule(OpSchema(add_call, (mat1_spec, mat2_spec), {}))
output_spec = output_sharding.output_spec
self.assertIsNone(output_spec)
self.assertIsNotNone(output_sharding.redistribute_schema)
# ensure that the suggestion is to reshard the first
# arg by all_gather first tensor dim sharding
schema_suggestion = output_sharding.redistribute_schema
self.assertEqual(schema_suggestion.args_schema[0].dim_map, [-1, -1, -1, 1])
self.assertEqual(schema_suggestion.args_schema[1].dim_map, mat2)
@with_comms
def test_pointwise_enforce_sharding_multi_sharding_on_mesh_dim(self):
# 2d mesh pointwise sharding
mesh_shape = torch.arange(self.world_size).reshape(
self.world_size // 2, self.world_size // 2
)
mesh = DeviceMesh(self.device_type, mesh_shape)
add_call = aten.add_.Tensor
# more advanced case that needs reshard one input to align sharding
mat1, mat2 = [0, -1, 1], [-1, -1, 0]
mat1_tensor_meta = self._gen_tensor_meta(torch.Size([12, 4, 8]))
mat2_tensor_meta = self._gen_tensor_meta(torch.Size([12, 1, 8]))
mat1_spec = DTensorSpec.from_dim_map(
mesh, mat1, [], tensor_meta=mat1_tensor_meta
)
mat2_spec = DTensorSpec.from_dim_map(
mesh, mat2, [], tensor_meta=mat2_tensor_meta
)
output_sharding = pointwise_rule(OpSchema(add_call, (mat1_spec, mat2_spec), {}))
output_spec = output_sharding.output_spec
self.assertIsNone(output_spec)
self.assertIsNotNone(output_sharding.redistribute_schema)
# ensure that the suggestion is to reshard the second
# arg as we should enforce the sharding of the first arg
schema_suggestion = output_sharding.redistribute_schema
self.assertEqual(schema_suggestion.args_schema[0].dim_map, mat1)
self.assertEqual(schema_suggestion.args_schema[1].dim_map, mat1)
if __name__ == "__main__":
run_tests()
|