File: test_dtensor.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1065 lines) | stat: -rw-r--r-- 43,273 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]

import os
import pathlib
import tempfile
import unittest

from numpy.testing import assert_array_equal

import torch
import torch.nn.functional as F
from torch.distributed._functional_collectives import AsyncCollectiveTensor
from torch.distributed._tensor import (
    DeviceMesh,
    distribute_tensor,
    DTensor,
    init_device_mesh,
)
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed._tensor.placement_types import (
    DTensorSpec,
    Partial,
    Replicate,
    Shard,
    TensorMeta,
)
from torch.distributed.tensor._api import _shard_tensor
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
    ColwiseParallel,
    parallelize_module,
    RowwiseParallel,
)
from torch.testing._internal.common_utils import IS_FBCODE, run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    with_comms,
)
from torch.testing._internal.logging_utils import LoggingTestCase


c10d_functional = torch.ops.c10d_functional


class DummyMLP(torch.nn.Module):
    def __init__(self, device):
        super().__init__()
        self.net1 = torch.nn.Linear(5, 1024, device=device)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(1024, 4, device=device)

    def forward(self, x):
        return self.net2(F.relu(self.net1(x)))

    def reset_parameters(self, *args, **kwargs):
        with torch.no_grad():
            self.net1.weight.fill_(0.5)
            self.net2.weight.fill_(1)
            self.net1.bias.fill_(1.5)
            self.net2.bias.fill_(1.2)


class DTensorTest(DTensorTestBase):
    @with_comms
    def test_dtensor_constructor(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = [Shard(0)]
        local_tensor = torch.randn(3, 3, requires_grad=True)

        spec = DTensorSpec(
            device_mesh,
            tuple(placements),
            tensor_meta=TensorMeta(
                torch.Size([self.world_size * 3, 3]),
                local_tensor.stride(),
                local_tensor.dtype,
            ),
        )

        dist_tensor = DTensor(
            local_tensor,
            spec,
            requires_grad=True,
        )
        self.assertEqual(dist_tensor.size(), torch.Size((self.world_size * 3, 3)))

        with self.assertWarnsRegex(UserWarning, "To construct"):
            DTensor(
                local_tensor,
                spec,
                requires_grad=False,
            )

    @with_comms
    def test_meta_dtensor(self):
        device_mesh = self.build_device_mesh()
        dist_specs = [[Shard(0)], [Replicate()]]
        meta_tensor = torch.randn(1024, 2048, device="meta")
        for dist_spec in dist_specs:
            # Test distribute_tensor on meta tensor
            meta_dtensor = distribute_tensor(meta_tensor, device_mesh, dist_spec)
            self.assertTrue(meta_dtensor.is_meta)
            meta_dtensor = torch.empty_like(meta_dtensor, device=self.device_type)
            torch.nn.init.constant_(meta_dtensor, 1.2)
            value_tensor = torch.empty_like(meta_dtensor.to_local()).fill_(1.2)
            self.assertFalse(meta_dtensor.is_meta)
            self.assertEqual(meta_dtensor.device.type, self.device_type)
            self.assertEqual(meta_dtensor.to_local(), value_tensor)
            # Test from_local on meta tensor
            meta_dtensor = DTensor.from_local(meta_tensor, device_mesh, dist_spec)
            meta_dtensor = torch.empty_like(meta_dtensor, device=self.device_type)
            torch.nn.init.constant_(meta_dtensor, 1.5)
            self.assertEqual(meta_dtensor.device.type, self.device_type)
            value_tensor = torch.empty_like(meta_dtensor.to_local()).fill_(1.5)
            self.assertEqual(meta_dtensor.to_local(), value_tensor)

    @with_comms
    def test_modules_w_meta_dtensor(self):
        model = DummyMLP("meta")
        device_mesh = self.build_device_mesh()
        parallelize_plan = {
            "net1": ColwiseParallel(),
            "net2": RowwiseParallel(),
        }
        model_tp = parallelize_module(model, device_mesh, parallelize_plan)
        model_tp.to_empty(device=self.device_type)
        model_tp.reset_parameters()
        optim = torch.optim.SGD(model_tp.parameters(), lr=0.1)
        model_regular = DummyMLP(self.device_type)
        model_regular_tp = parallelize_module(
            model_regular, device_mesh, parallelize_plan
        )
        optim_regular = torch.optim.SGD(model_regular_tp.parameters(), lr=0.1)
        model_regular_tp.reset_parameters()
        torch.manual_seed(0)
        inp = torch.randn(20, 5, device=self.device_type)

        output = model_tp(inp)
        output_regular = model_regular_tp(inp)
        self.assertEqual(output, output_regular)

        output.sum().backward()
        output_regular.sum().backward()

        optim.step()
        optim_regular.step()

        torch.manual_seed(1)
        inp = torch.randn(20, 5, device=self.device_type)
        self.assertEqual(model_tp(inp), model_regular_tp(inp))

    @with_comms
    def test_dtensor_stride(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        shard0_spec = [Shard(0)]
        local_tensor = torch.randn(4, 8)
        global_shape = torch.Size([self.world_size * 4, 8])
        dist_tensor = DTensor.from_local(local_tensor, device_mesh, shard0_spec)
        # won't affect stride
        self.assertEqual(dist_tensor.stride(), (8, 1))

        shard1_spec = [Shard(1)]
        local_tensor = torch.randn(8, 4)
        global_shape = torch.Size([8, self.world_size * 4])
        dist_tensor = DTensor.from_local(local_tensor, device_mesh, shard1_spec)
        # will affect stride after DT initialized
        self.assertEqual(dist_tensor.stride(), (4 * self.world_size, 1))

        # if initialized from a transposed mat
        local_tensor = torch.randn(8, 4, 8)
        local_tensor_t = local_tensor.permute(1, 2, 0)
        global_shape = torch.Size([4, self.world_size * 8, 8])
        self.assertEqual(local_tensor_t.stride(), (8, 1, 32))
        dist_tensor = DTensor.from_local(local_tensor_t, device_mesh, shard1_spec)
        global_stride = (8 * self.world_size, 1, 32 * self.world_size)
        self.assertEqual(dist_tensor.stride(), global_stride)

    @with_comms
    def test_from_local(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = [Shard(0)]
        local_tensor = torch.randn(3, 3)
        sharded_tensor = DTensor.from_local(local_tensor, device_mesh, placements)
        self.assertEqual(sharded_tensor.size(), torch.Size([self.world_size * 3, 3]))

        replica_spec = [Replicate()]
        ddp_tensor = DTensor.from_local(local_tensor, device_mesh, replica_spec)
        self.assertEqual(ddp_tensor.size(), local_tensor.size())

        partial_spec = [Partial()]
        partial_tensor = DTensor.from_local(local_tensor, device_mesh, partial_spec)
        self.assertEqual(partial_tensor.size(), local_tensor.size())

        # test dist tensor works with torch.Tensor during backwards
        local_tensor_with_grad = torch.randn(3, 3, requires_grad=True)
        # do some operations on local tensor
        local_tensor_temp = local_tensor_with_grad * 3
        # create the dist tensor with non leaf local tensor, dist tensor created
        # should also be non leaf node
        dist_tensor = DTensor.from_local(local_tensor_temp, device_mesh, placements)
        self.assertFalse(dist_tensor.is_leaf)
        # do some random operations on dist tensor
        output = dist_tensor * 3
        self.assertIsInstance(output, DTensor)
        # trigger .backward() on dist tensor directly
        local_grad = torch.ones(3, 3)
        grad_output = DTensor.from_local(local_grad, device_mesh, placements)
        # run backward directly on dist tensor
        output.backward(grad_output)
        # check it gradients flow back to original torch.Tensor
        self.assertIsNotNone(local_tensor_with_grad.grad)
        expected_grad = torch.ones(3, 3) * 9
        self.assertEqual(local_tensor_with_grad.grad, expected_grad)

    @with_comms
    def test_from_local_uneven_sharding(self):
        mesh_shape = (self.world_size,)
        device_mesh = init_device_mesh(self.device_type, mesh_shape)

        uneven_dim0_size = self.world_size + 1
        global_tensor = torch.randn(uneven_dim0_size, 2)
        shard_placement = Shard(0)
        tensor_list, _ = shard_placement._split_tensor(
            global_tensor,
            device_mesh.size(mesh_dim=0),
            with_padding=False,
            contiguous=True,
        )

        dtensor = DTensor.from_local(
            tensor_list[self.rank],
            device_mesh,
            (Shard(0),),
            shape=global_tensor.size(),
            stride=global_tensor.stride(),
        )

        self.assertEqual(dtensor.size(), global_tensor.size())
        self.assertEqual(dtensor.stride(), global_tensor.stride())

    @with_comms
    def test_from_local_uneven_sharding_raise_error(self):
        mesh_shape = (self.world_size,)
        device_mesh = init_device_mesh(self.device_type, mesh_shape)

        uneven_dim0_size = self.world_size + 1
        global_tensor = torch.randn(uneven_dim0_size, 2)
        shard_placement = Shard(0)
        tensor_list, _ = shard_placement._split_tensor(
            global_tensor,
            device_mesh.size(mesh_dim=0),
            with_padding=False,
            contiguous=True,
        )

        with self.assertRaisesRegex(
            RuntimeError, "Please pass both shape and stride at the same time."
        ):
            dtensor = DTensor.from_local(
                tensor_list[self.rank],
                device_mesh,
                (Shard(0),),
                shape=global_tensor.size(),
            )

        with self.assertRaisesRegex(
            RuntimeError, "Please pass both shape and stride at the same time."
        ):
            dtensor = DTensor.from_local(
                tensor_list[self.rank],
                device_mesh,
                (Shard(0),),
                stride=global_tensor.stride(),
            )

    @with_comms
    def test_from_local_negative_dim(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = [Shard(-1)]
        local_tensor = torch.randn(3, 3)
        sharded_tensor = DTensor.from_local(local_tensor, device_mesh, placements)
        self.assertEqual(sharded_tensor.placements[0].dim, 1)

    @with_comms
    def test_to_local(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = (Shard(0),)
        local_tensor_with_grad = torch.randn(
            3, 3, device=self.device_type, requires_grad=True
        )
        dist_tensor_shape = torch.Size([self.world_size * 3, 3])
        spec = DTensorSpec(
            mesh=device_mesh,
            placements=placements,
            tensor_meta=TensorMeta(
                dist_tensor_shape,
                local_tensor_with_grad.stride(),
                local_tensor_with_grad.dtype,
            ),
        )
        sharded_tensor = DTensor(
            local_tensor_with_grad,
            spec,
            requires_grad=True,
        )
        self.assertEqual(sharded_tensor.size(), dist_tensor_shape)
        self.assertEqual(sharded_tensor.to_local(), local_tensor_with_grad)

        # test dist tensor works with torch.Tensor during backwards
        # dist tensor created is a leaf node, do some operation on dist tensor
        temp_st = sharded_tensor * 3

        # do some operation on local tensor of the dist tensor
        new_tensor_with_grad = torch.randn(
            3, 3, device=self.device_type, requires_grad=True
        )
        res = temp_st.to_local() + new_tensor_with_grad
        # call backward directly on torch.Tensor, and see if it works by
        # propagating through dist tensor
        res.sum().backward()
        self.assertIsNotNone(sharded_tensor.grad)

        self.assertEqual(sharded_tensor.grad.to_local(), torch.ones(3, 3) * 3)

        # test the case when grad stride is different from fwd input.
        res = sharded_tensor.to_local()
        model = torch.nn.ReLU()
        res.register_hook(lambda grad: grad.t())
        target = torch.randn(3, 3, device=self.device_type)
        mae_loss = torch.nn.L1Loss()
        output = mae_loss(model(res), target)
        # The manual change to grad stride leads to the failure of the copy op afterwards.
        # so that we need a try-catch here.
        try:
            output.backward()
        except RuntimeError:
            self.assertEqual(sharded_tensor.grad.stride(), [1, 3 * self.world_size])

        # test the case under no-grad we directly return the local tensor
        with torch.no_grad():
            local_no_grad = sharded_tensor.to_local()
            assert local_no_grad is sharded_tensor._local_tensor

    @with_comms
    def test_to_local_grad_hint(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = (Shard(0),)
        global_tensor = torch.ones(8, 3, requires_grad=True)

        sharded_dtensor = distribute_tensor(global_tensor, device_mesh, placements)
        comm_mode = CommDebugMode()

        with comm_mode:
            local_out = sharded_dtensor.redistribute(placements=[Replicate()]).to_local(
                grad_placements=[Partial()]
            )
            local_out.backward(torch.ones_like(local_out))

        self.assertEqual(
            comm_mode.comm_counts[c10d_functional.all_gather_into_tensor], 1
        )
        self.assertEqual(
            comm_mode.comm_counts[c10d_functional.reduce_scatter_tensor], 1
        )

        replica_grad = sharded_dtensor.grad.full_tensor()
        self.assertEqual(replica_grad, global_tensor * self.world_size)

    @with_comms
    def test_full_tensor_sync(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = (Shard(0),)
        global_tensor = torch.ones(8, 3, requires_grad=True)

        sharded_dtensor = distribute_tensor(global_tensor, device_mesh, placements)
        full_out = sharded_dtensor.full_tensor()
        self.assertFalse(isinstance(full_out, AsyncCollectiveTensor))
        self.assertEqual(full_out, global_tensor)

    @with_comms
    def test_full_tensor_grad_hint(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = (Shard(0),)
        global_tensor = torch.ones(8, 3, requires_grad=True)

        sharded_dtensor = distribute_tensor(global_tensor, device_mesh, placements)
        local_out = sharded_dtensor.full_tensor(grad_placements=[Partial()])
        local_out.sum().backward()

        replica_grad = sharded_dtensor.grad.full_tensor()
        self.assertEqual(replica_grad, global_tensor * self.world_size)

    @with_comms
    def test_dtensor_new_empty_strided(self):
        device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
        local_tensor = torch.randn(8, 8, requires_grad=True, device=self.device_type)
        my_dtensor = distribute_tensor(local_tensor, device_mesh, [Shard(0)])
        new_strided_dtensor = my_dtensor.new_empty_strided(
            (8, 8), (8, 1), requires_grad=True
        )
        # test the op produces new dtensor and autograd works
        self.assertEqual(new_strided_dtensor.shape, my_dtensor.shape)
        new_strided_dtensor.sum().backward()
        self.assertIsNotNone(new_strided_dtensor.grad)
        self.assertIsInstance(new_strided_dtensor.grad, DTensor)

        # test backward new_empty_strided with sharding works correctly
        my_dtensor.to_local().sum().backward()
        local_tensor.sum().backward()
        self.assertEqual(my_dtensor.grad, new_strided_dtensor.grad)
        self.assertEqual(
            my_dtensor.grad.redistribute(placements=[Replicate()]).to_local(),
            local_tensor.grad,
        )

    @with_comms
    def test_dtensor_async_output(self):
        # Tests that if the output of some dtensor operations  isn't used in any compute,
        # the output should be an AsyncCollectiveTensor (representing the fact that
        # we haven't synced the collective yet).
        mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))

        def fn(dt):
            dt_out_redistribute = dt.redistribute(mesh, [Replicate()], async_op=True)
            # Make sure we haven't synced yet
            # TODO: figure out why this is returning None
            # self.assertTrue(_tensor_needs_wait(dt_out_redistribute))
            dt_out_redistribute_view = dt_out_redistribute.view(
                dt_out_redistribute.shape
            )
            local_tensor = dt_out_redistribute_view.to_local()
            return local_tensor

        x = torch.ones((4, 2), device=self.device_type)
        dt = distribute_tensor(x, mesh, [Shard(0)])
        out = fn(dt)
        # Make sure we haven't synced yet
        self.assertEqual(type(out), AsyncCollectiveTensor)
        self.assertFalse(out.completed)
        out_view = out.view(-1)

        # Assert that output is a `AsyncCollectiveTensor`
        self.assertEqual(type(out_view), AsyncCollectiveTensor)
        self.assertFalse(out.completed)

        # Use the daa, requiring a sync
        ref = torch.ones((4, 2), device=self.device_type) + 1
        ref = ref.view(-1)
        out_data = out_view + 1
        self.assertEqual(type(out_data), torch.Tensor)
        self.assertEqual(out_data, ref)

        # test async_op = False default
        sync_out = dt.redistribute(mesh, [Replicate()])
        self.assertFalse(isinstance(sync_out, AsyncCollectiveTensor))
        self.assertEqual(sync_out.to_local(), x)

    @with_comms
    def test_from_local_then_to_local(self):
        # this test ensure end to end from torch.Tensor -> dist tensor -> torch.Tensor works
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = [Shard(0)]

        # step 1. construct from construct local tensor
        local_tensor_with_grad = torch.randn(
            3, 3, device=self.device_type, requires_grad=True
        )
        # do some operations on local tensor
        local_tensor_temp = local_tensor_with_grad + 8
        # step 2. create the dist tensor with non leaf local tensor, dist tensor
        # created should also be non leaf node
        dist_tensor = DTensor.from_local(local_tensor_temp, device_mesh, placements)
        self.assertFalse(dist_tensor.is_leaf)
        # do some random operations on dist tensor
        output = dist_tensor * 6
        self.assertIsInstance(output, DTensor)

        # step 3. do some operation on local tensor of the dist tensor
        new_tensor_with_grad = torch.randn(
            3, 3, device=self.device_type, requires_grad=True
        )
        res = output.to_local() + new_tensor_with_grad
        # call backward directly on torch.Tensor, and see if it works by
        # propagating all the way back to the original torch.Tensor
        res.sum().backward()
        self.assertIsNotNone(local_tensor_with_grad.grad)

        expected_grad = torch.ones(3, 3) * 6
        self.assertEqual(local_tensor_with_grad.grad, expected_grad)

    @with_comms
    def test_dtensor_spec_read_only_after_set(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = [Shard(0)]
        local_tensor = torch.randn(3, 3)
        sharded_tensor = DTensor.from_local(local_tensor, device_mesh, placements)

        # modify placements, and dist_tensor's spec should not be changed
        placements[0] = Replicate()
        self.assertTrue(sharded_tensor.placements is not placements)
        self.assertNotEqual(sharded_tensor.placements, placements)

    @with_comms
    def test_dtensor_spec_hash(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = [Shard(0)]
        local_tensor = torch.randn(3, 3)
        local_tensor2 = torch.randn(3, 3)
        sharded_tensor = DTensor.from_local(local_tensor, device_mesh, placements)
        sharded_tensor2 = DTensor.from_local(local_tensor2, device_mesh, placements)
        # note that DTensorSpec without real tensor data, so the hash would be the same
        # as long as the mesh, placements and tensor properties are the same
        self.assertEqual(hash(sharded_tensor._spec), hash(sharded_tensor2._spec))

        # change the placements would change the hash
        local_tensor3 = torch.ones(3, 3)
        replica_spec = [Replicate()]
        replica_tensor = DTensor.from_local(
            local_tensor3, device_mesh, replica_spec, run_check=False
        )
        self.assertNotEqual(hash(sharded_tensor._spec), hash(replica_tensor._spec))

    @with_comms
    def test_dtensor_properties(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = [Shard(0)]
        local_tensor = torch.randn(3, 3)
        sharded_tensor = DTensor.from_local(local_tensor, device_mesh, placements)
        self.assertEqual(sharded_tensor.device.type, self.device_type)

    @with_comms
    def test_dtensor_save_load(self):
        import io

        device_mesh = self.build_device_mesh()
        placements = [Shard(0)]
        local_tensor = torch.randn(3, 3)
        sharded_tensor = DTensor.from_local(local_tensor, device_mesh, placements)
        buffer = io.BytesIO()
        torch.save(sharded_tensor, buffer)
        buffer.seek(0)
        reloaded_st = torch.load(buffer, weights_only=False)
        self.assertEqual(sharded_tensor, reloaded_st)
        buffer.seek(0)
        reloaded_st = torch.load(buffer, weights_only=True)
        self.assertEqual(sharded_tensor, reloaded_st)

    @with_comms
    @unittest.skipIf(
        IS_FBCODE,
        "subprocess import torch fails with ModuleNotFoundError: No module named 'torch' in fbcode",
    )
    def test_dtensor_save_load_import(self):
        for should_import in [True, False]:
            device_mesh = self.build_device_mesh()
            placements = [Shard(0)]
            local_tensor = torch.randn(3, 3)
            sharded_tensor = DTensor.from_local(local_tensor, device_mesh, placements)
            with tempfile.NamedTemporaryFile() as f:
                torch.save(sharded_tensor, f)
                import_string = (
                    "import torch.distributed.tensor;" if should_import else ""
                )
                filename = pathlib.Path(f.name)
                err_msg = (
                    (
                        "_pickle.UnpicklingError: Weights only load failed. "
                        "``torch.distributed.tensor`` must be imported to load DTensors"
                    )
                    if not should_import
                    else None
                )
                self._attempt_load_from_subprocess(filename, import_string, err_msg)

    @with_comms
    def test_shard_tensor(self):
        ws = self.world_size
        device_mesh = DeviceMesh(self.device_type, list(range(ws)))
        full_tensor = torch.arange(ws * ws).reshape(ws, ws)

        # Shard by row
        placements = [Shard(0)]
        sharded_tensor = _shard_tensor(full_tensor, placements, device_mesh)
        self.assertEqual(sharded_tensor.size(), torch.Size([ws, ws]))
        self.assertEqual(sharded_tensor.placements, placements)
        local_tensor = sharded_tensor.to_local()
        self.assertEqual(local_tensor, full_tensor[range(self.rank, self.rank + 1), :])

        # Shard by column
        placements = [Shard(1)]
        sharded_tensor = _shard_tensor(full_tensor, placements, device_mesh)
        self.assertEqual(sharded_tensor.size(), torch.Size([ws, ws]))
        self.assertEqual(sharded_tensor.placements, placements)
        local_tensor = sharded_tensor.to_local()
        self.assertEqual(local_tensor, full_tensor[:, range(self.rank, self.rank + 1)])

        # assert full tensor is not changed
        self.assertEqual(full_tensor, torch.arange(ws * ws).reshape(ws, ws))

    @with_comms
    def test_shard_tensor_2d(self):
        ws = self.world_size
        full_tensor = torch.arange(ws).reshape(2, ws // 2)
        device_mesh = DeviceMesh(self.device_type, full_tensor)

        # Shard by row and column
        placements = [Shard(0), Shard(1)]
        sharded_tensor = _shard_tensor(full_tensor, placements, device_mesh)
        self.assertEqual(sharded_tensor.size(), torch.Size([2, ws // 2]))
        self.assertEqual(sharded_tensor.placements, placements)
        local_tensor = sharded_tensor.to_local()
        self.assertEqual(local_tensor.item(), self.rank)


class DTensorMeshTest(DTensorTestBase):
    @property
    def world_size(self):
        return 8

    def sub_mesh_assert_equal(self, mesh, exp_in_mesh, exp_out_of_mesh, tensor):
        if self.rank in mesh:
            self.assertEqual(tensor, exp_in_mesh)
        else:
            self.assertEqual(tensor, exp_out_of_mesh)

    @with_comms
    def test_dtensor_device_mesh_device_conversion(self):
        # construct a cuda device mesh
        mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))

        # construct from a cpu local tensor with cuda device mesh
        # should automatically convert the dist tensor to cuda
        placements = [Shard(0)]
        local_tensor = torch.randn(3, 3)
        dist_tensor = DTensor.from_local(local_tensor, mesh, placements)
        self.assertEqual(dist_tensor.device.type, self.device_type)
        self.assertEqual(dist_tensor.to_local().device.type, self.device_type)

    @with_comms
    def test_dtensor_api_device_mesh_context_manager(self):
        with DeviceMesh(self.device_type, list(range(self.world_size))) as mesh:
            placements = [Shard(0)]
            local_tensor = torch.randn(3, 3)
            sharded_tensor = DTensor.from_local(
                local_tensor, device_mesh=mesh, placements=placements
            )

        with DeviceMesh(self.device_type, list(range(self.world_size))):
            placements = [Shard(0)]
            local_tensor = torch.randn(3, 3)
            sharded_tensor = DTensor.from_local(local_tensor, placements=placements)
            replica_spec = [Replicate()]
            replica_tensor = sharded_tensor.redistribute(placements=replica_spec)
            self.assertEqual(
                replica_tensor.size(), torch.Size([3 * self.world_size, 3])
            )

        with DeviceMesh(self.device_type, torch.arange(self.world_size)):
            placements = [Shard(0)]
            global_shape = torch.Size([3 * self.world_size, 3])
            global_tensor = torch.randn(global_shape)
            sharded_tensor = distribute_tensor(global_tensor, placements=placements)
            self.assertEqual(sharded_tensor.to_local().shape, torch.Size([3, 3]))

            mesh_2d = DeviceMesh(
                self.device_type, torch.arange(self.world_size).reshape(2, 4)
            )

            with mesh_2d:
                shard_2d_spec = [Shard(0), Replicate()]
                tensor_2d = distribute_tensor(global_tensor, placements=shard_2d_spec)

                self.assertEqual(tensor_2d.to_local().shape, torch.Size([3 * 4, 3]))

            sharded_after_2d = distribute_tensor(global_tensor, placements=placements)
            self.assertEqual(sharded_after_2d.to_local().shape, torch.Size([3, 3]))

    @with_comms
    def test_dtensor_2d_mesh(self):
        mesh_tensor = torch.arange(self.world_size).reshape(2, 4)
        # construct a cuda device mesh
        mesh = DeviceMesh(self.device_type, mesh_tensor)

        # construct a dist tensor on 2d device mesh and test if works
        placements = [Shard(0), Shard(1)]
        local_tensor = torch.randn(3, 3)
        dist_tensor = DTensor.from_local(local_tensor, mesh, placements)
        self.assertEqual(
            dist_tensor.size(), torch.Size([3 * mesh.size(0), 3 * mesh.size(1)])
        )
        self.assertEqual(dist_tensor.device.type, self.device_type)
        self.assertEqual(dist_tensor.to_local().device.type, self.device_type)

        # if shard on the same tensor dimension
        # we should correctly construct the global tensor size
        shard_same_dim_spec = [Shard(0), Shard(0)]
        local_tensor = torch.randn(3, 3)
        dist_tensor = DTensor.from_local(local_tensor, mesh, shard_same_dim_spec)
        self.assertEqual(dist_tensor.size(), torch.Size([3 * self.world_size, 3]))

    @with_comms
    def test_device_mesh_nd(self):
        # construct a cuda device mesh
        mesh_tensor = torch.arange(self.world_size).reshape(2, 2, 2)
        mesh = DeviceMesh(self.device_type, mesh_tensor)
        # construct a dist tensor on 3d device mesh and test if works
        placements = [Shard(0), Shard(1), Shard(2)]
        local_tensor = torch.randn(3, 3, 3)
        dist_tensor = DTensor.from_local(local_tensor, mesh, placements)
        self.assertEqual(dist_tensor.size(), torch.Size([6, 6, 6]))
        self.assertEqual(dist_tensor.device.type, self.device_type)
        self.assertEqual(dist_tensor.to_local().device.type, self.device_type)

        # construct a dist tensor on 3d device mesh with some shards on same dim
        placements = [Shard(0), Shard(0), Shard(2)]
        local_tensor = torch.randn(3, 3, 3)
        dist_tensor = DTensor.from_local(local_tensor, mesh, placements)
        self.assertEqual(dist_tensor.size(), torch.Size([12, 3, 6]))
        self.assertEqual(dist_tensor.device.type, self.device_type)
        self.assertEqual(dist_tensor.to_local().device.type, self.device_type)

    @with_comms
    def test_dtensor_spec_local_shard_offset(self):
        device_mesh = DeviceMesh(
            self.device_type, torch.arange(self.world_size).reshape(2, 4)
        )
        tensor_shape = (3 * self.world_size, 3 * self.world_size)
        # sharding specs and its corresponding local shard offsets
        shard_spec_and_offsets = [
            (
                [Shard(0), Replicate()],
                (3 * (self.world_size // 2) * (self.rank // 4), 0),
            ),
            (
                [Shard(1), Replicate()],
                (0, 3 * (self.world_size // 2) * (self.rank // 4)),
            ),
            (
                [Replicate(), Shard(0)],
                (3 * (self.world_size // 4) * (self.rank % 4), 0),
            ),
            (
                [Replicate(), Shard(1)],
                (0, 3 * (self.world_size // 4) * (self.rank % 4)),
            ),
        ]

        from torch.distributed._tensor._utils import (
            compute_local_shape_and_global_offset,
        )

        # loop through all sharding specs and check local shard offsets
        logical_tensor = torch.randn(tensor_shape)
        for placements, expected_shard_offsets in shard_spec_and_offsets:
            dtensor = distribute_tensor(logical_tensor, device_mesh, placements)
            _, offset = compute_local_shape_and_global_offset(
                dtensor.shape, device_mesh, dtensor.placements
            )
            self.assertEqual(expected_shard_offsets, offset)

    @with_comms
    def test_from_local_sub_mesh(self):
        mesh = DeviceMesh(self.device_type, [0, 2])
        local_tensor = torch.ones(3, 4)

        dtensor = DTensor.from_local(local_tensor, mesh, [Shard(0)])
        self.assertEqual(dtensor.size(), torch.Size([6, 4]))

        self.sub_mesh_assert_equal(
            mesh.mesh,
            torch.ones(3, 4),
            torch.tensor([]),
            dtensor.to_local(),
        )

        # test dtensor created in submesh, the operation should only
        # be applied to the local shard inside the mesh, not the whole
        # world, so only 0/2 really run the computation
        dtensor = dtensor + 2

        self.sub_mesh_assert_equal(
            mesh.mesh,
            torch.ones(3, 4) + 2,
            torch.tensor([]),
            dtensor.to_local(),
        )

    @with_comms
    def test_default_value_sub_mesh(self):
        mesh = DeviceMesh(self.device_type, [0, 2])

        # test scalar return value
        local_tensor1 = torch.ones(4, 3)
        local_tensor2 = torch.ones(4, 3)
        dtensor1 = DTensor.from_local(local_tensor1, mesh, [Shard(0)])
        dtensor2 = DTensor.from_local(local_tensor2, mesh, [Shard(0)])
        local_res = dtensor1.equal(dtensor2)  # equal returns local result
        self.sub_mesh_assert_equal(
            mesh.mesh,
            True,
            True,
            local_res,
        )

        # test 0-d tensor return value
        local_tensor = torch.ones(4, 3)
        dtensor = DTensor.from_local(local_tensor, mesh, [Shard(0)]).sum()
        self.sub_mesh_assert_equal(
            mesh.mesh,
            torch.tensor(12.0),
            torch.tensor(0.0),
            dtensor.to_local(),
        )

        # test List[torch.Tensor] return value
        local_tensor = torch.ones(3, 4)
        dtensor = DTensor.from_local(local_tensor, mesh, [Shard(0)])
        dtensor_list = dtensor.split([2, 2], dim=1)
        self.sub_mesh_assert_equal(
            mesh.mesh,
            [torch.ones(3, 2)] * 2,
            [torch.tensor([])] * 2,
            [dt.to_local() for dt in dtensor_list],
        )

    @with_comms
    def test_redistribute_sub_mesh(self):
        mesh = DeviceMesh(self.device_type, [0, 2])

        # test redistribute on a submesh
        local_tensor1 = torch.ones(4, 3)
        sharded_dtensor = DTensor.from_local(local_tensor1, mesh, [Shard(0)])
        replicated_dtensor = sharded_dtensor.redistribute(placements=[Replicate()])
        self.sub_mesh_assert_equal(
            mesh.mesh, torch.ones(8, 3), torch.tensor([]), replicated_dtensor.to_local()
        )
        sharded_again = replicated_dtensor.redistribute(placements=[Shard(0)])
        self.sub_mesh_assert_equal(
            mesh.mesh, torch.ones(4, 3), torch.tensor([]), sharded_again.to_local()
        )

    @with_comms
    def test_implicit_replication(self):
        mesh = init_device_mesh(self.device_type, (self.world_size,))
        local_tensor1 = torch.ones(4, 3)
        sharded_dtensor = DTensor.from_local(local_tensor1, mesh, [Shard(0)])

        with implicit_replication():
            # We put the scalar tensor as the left operand so we can test out
            # when a non-dtensor is a the arg in the args list.
            out_dt = torch.ones(3, device=self.device_type) + sharded_dtensor
            self.assertEqual(out_dt.placements, [Shard(0)])
            self.assertEqual(out_dt.shape, (4 * self.world_size, 3))
            local_shard = out_dt.to_local()
            self.assertEqual(local_shard.shape, (4, 3))
            self.assertEqual(local_shard, torch.ones(4, 3) + torch.ones(3))

    @with_comms
    def test_auto_implicit_replication(self):
        mesh = init_device_mesh(self.device_type, (self.world_size,))

        local_tensor = torch.ones(self.world_size, 3, device=self.device_type)
        sharded_dtensor = DTensor.from_local(local_tensor, mesh, [Shard(0)])

        # automatically turn tensor to DTensor replicate when ndim = 0 and numel = 1
        ndim_0_tensor = torch.tensor(1, device=self.device_type)

        def add_scalar_tensor_with_dtensor():
            return ndim_0_tensor + sharded_dtensor

        result = add_scalar_tensor_with_dtensor().to_local()
        self.assertEqual(result, local_tensor + ndim_0_tensor)
        self.assertNotWarn(
            add_scalar_tensor_with_dtensor,
            "Found a non-scalar tensor with numel=1 and ndim!=0",
        )

        # automatically turn tensor to DTensor replicate when ndim = 1 and numel = 1
        numel_1_tensor = torch.tensor([1], device=self.device_type)
        self.assertEqual(
            (numel_1_tensor + sharded_dtensor).to_local(), numel_1_tensor + local_tensor
        )

    @with_comms
    def test_implicit_replication_for_foreach_ops(self):
        mesh = init_device_mesh(
            self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
        )
        global_tensor1 = torch.randn(4, 2)
        dtensor_2d = distribute_tensor(global_tensor1, mesh, [Shard(0), Shard(1)])
        self.assertEqual(dtensor_2d.full_tensor(), global_tensor1)
        global_tensor2 = torch.randn(4)
        dtensor_1d = distribute_tensor(global_tensor2, mesh["dp"], [Shard(0)])
        dtensor_list = [dtensor_2d, dtensor_1d]

        # Check without implicit replication, cross mesh error raises.
        with self.assertRaisesRegex(
            RuntimeError, "DTensor does not support cross-mesh operation yet!"
        ):
            torch._foreach_mul(dtensor_list, 2.0)

        # Check dtensor result matches tensor result.
        with implicit_replication():
            torch._foreach_mul_(dtensor_list, 2.0)
            self.assertEqual(dtensor_list[0].full_tensor(), global_tensor1 * 2.0)
            self.assertEqual(dtensor_list[1].full_tensor(), global_tensor2 * 2.0)

        mesh_1d = DeviceMesh.from_group(mesh["tp"].get_group(), self.device_type)
        dtensor_1d = distribute_tensor(global_tensor2, mesh_1d, [Shard(0)])
        dtensor_list = [dtensor_2d, dtensor_1d]

        # Check even with implicit replication, cross mesh error raises if different device mesh don't
        # belong to the same root mesh.
        with self.assertRaisesRegex(
            RuntimeError, "DTensor does not support cross-mesh operation yet!"
        ):
            torch._foreach_mul_(dtensor_list, 2.0)

    @with_comms
    def test_metadata_consistency_check(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements = [Shard(0)]

        # Create a local tensor with specific metadata and check dtype change
        local_tensor = torch.randn(3, 3, requires_grad=True, dtype=torch.float32)

        if self.rank == 0:
            local_tensor = local_tensor.to(dtype=torch.float64)

        with self.assertRaises(ValueError):
            DTensor.from_local(local_tensor, device_mesh, placements, run_check=True)

        try:
            DTensor.from_local(local_tensor, device_mesh, placements, run_check=False)
        except ValueError:
            self.fail("Unexpected ValueError raised with run_check=False")

        # Create a local tensor with specific metadata and check requires_grad change
        local_tensor = torch.randn(3, 3, requires_grad=True, dtype=torch.float32)

        if self.rank == 0:
            local_tensor.requires_grad = False

        with self.assertRaises(ValueError):
            DTensor.from_local(local_tensor, device_mesh, placements, run_check=True)

        try:
            DTensor.from_local(local_tensor, device_mesh, placements, run_check=False)
        except ValueError:
            self.fail("Unexpected ValueError raised with run_check=False")

        # Create a local tensor with specific metadata and check stride change
        local_tensor = torch.randn(3, 4, requires_grad=True, dtype=torch.float32)

        if self.rank == 0:
            local_tensor = local_tensor.t()  # transpose changes the stride

        with self.assertRaises(ValueError):
            DTensor.from_local(local_tensor, device_mesh, placements, run_check=True)

        try:
            DTensor.from_local(local_tensor, device_mesh, placements, run_check=False)
        except ValueError:
            self.fail("Unexpected ValueError raised with run_check=False")


class TestDTensorPlacementTypes(DTensorTestBase):
    @property
    def world_size(self):
        return 8

    def _create_tensor(self, size):
        # Keep everything deterministic.
        torch.manual_seed(0)
        tensor = torch.rand(size)
        if self.device_type == "cuda":
            return tensor.cuda()
        else:
            return tensor

    @with_comms
    def test_split_tensor_1D(self) -> None:
        mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
        shard_placement = Shard(0)

        for size in range(8):
            tensor = self._create_tensor(size)
            splitted_tensor_list, pad_sizes = shard_placement._split_tensor(
                tensor,
                mesh.size(),
                with_padding=True,
                contiguous=True,
            )
            if size == 0:
                # when tensor size is 0, there is no padding needed for all the ranks.
                expected_pad_sizes = []
                assert_array_equal(expected_pad_sizes, pad_sizes)

                is_tensor_empty = [
                    False if splitted_tensor.numel() > 0 else True
                    for splitted_tensor in splitted_tensor_list
                ]
                expected_is_tensor_empty = [True] * self.world_size
                assert_array_equal(expected_is_tensor_empty, is_tensor_empty)
            else:
                expected_pad_sizes = [
                    0 if idx < size else 1
                    for idx, _ in enumerate(range(self.world_size))
                ]
                assert_array_equal(expected_pad_sizes, pad_sizes)

                from torch.distributed.tensor._collective_utils import unpad_tensor

                unpadded_list = [
                    (
                        unpad_tensor(tensor, shard_placement.dim, pad_sizes[i])
                        if pad_sizes[i] > 0
                        else tensor
                    )
                    for i, tensor in enumerate(splitted_tensor_list)
                ]
                expected_is_tensor_empty = [
                    False if idx < size else True
                    for idx, _ in enumerate(range(self.world_size))
                ]
                is_tensor_empty = [
                    False if unpadded_tensor.numel() > 0 else True
                    for unpadded_tensor in unpadded_list
                ]
                assert_array_equal(expected_is_tensor_empty, is_tensor_empty)


class DTensorLogTest(LoggingTestCase):
    def test_dtensor_log(self):
        if not torch.distributed.is_available() or not torch.cuda.is_available():
            return

        env = dict(os.environ)
        env["TORCH_LOGS"] = "+dtensor"
        env["RANK"] = "0"
        env["WORLD_SIZE"] = "1"
        env["MASTER_PORT"] = "12345"
        env["MASTER_ADDR"] = "localhost"

        stdout, stderr = self.run_process_no_exception(
            """\
import logging
import torch
from torch.distributed._tensor import  init_device_mesh, distribute_tensor, Shard

mesh = init_device_mesh("cuda", (1,), mesh_dim_names=("dp",))
placements = [Shard(0)]
tensor = torch.randn(12, 8, 8)
dtensor = distribute_tensor(tensor, mesh, placements)
dtensor.max()
""",
            env=env,
        )
        self.assertIn("_dispatch.py", stderr.decode("utf-8"))
        self.assertIn("redistribute=False", stderr.decode("utf-8"))


if __name__ == "__main__":
    run_tests()