1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import unittest
import warnings
import torch
import torch.distributed as dist
import torch.testing._internal.common_methods_invocations as common_ops
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.overrides import resolve_name
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
ops,
)
from torch.testing._internal.common_methods_invocations import DecorateInfo, op_db
from torch.testing._internal.common_utils import run_tests, suppress_warnings
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorConverter,
DTensorOpTestBase,
)
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_map
# rewrite common size variables to sth can be sharded evenly
# we can enable uneven shards later, but need to adjust more on
# sample inputs (i.e. view/reshape need to adjust shape size as well)
common_ops.L = 24
common_ops.M = 12
common_ops.S = 4
common_ops.XS = 2
# Copied from functorch
def xfail(op_name, variant_name="", *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, True)
def skip(op_name, variant_name="", *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, False)
def skipOps(test_case_name, base_test_name, to_skip):
all_opinfos = op_db
for xfail in to_skip:
op_name, variant_name, device_type, dtypes, expected_failure = xfail
matching_opinfos = [
o
for o in all_opinfos
if o.name == op_name and o.variant_test_name == variant_name
]
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
for opinfo in matching_opinfos:
decorators = list(opinfo.decorators)
if expected_failure:
decorator = DecorateInfo(
unittest.expectedFailure,
test_case_name,
base_test_name,
device_type=device_type,
dtypes=dtypes,
)
decorators.append(decorator)
else:
decorator = DecorateInfo(
unittest.skip("Skipped!"),
test_case_name,
base_test_name,
device_type=device_type,
dtypes=dtypes,
)
decorators.append(decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
# Re-generate this failed list, turn on dry_run of the below func
# check_dtensor_func(self, test, op, dry_run=True), then run sth
# like python test/distributed/_tensor/test_dtensor_ops.py > failed.expect
dtensor_fails = {
# these sometimes pass and sometimes fail
# we need to remove many of them from list once op
# get full support with varying sharding specs
xfail("__getitem__"),
xfail("__rsub__"),
xfail("_chunk_cat"),
xfail("_native_batch_norm_legit"),
xfail("_upsample_bilinear2d_aa"),
xfail("addbmm"),
xfail("addmv"),
xfail("addr"),
xfail("all"),
xfail("allclose"),
xfail("alias_copy"),
xfail("amax"),
xfail("amin"),
xfail("aminmax"),
xfail("any"),
xfail("arange"),
xfail("argmax"),
xfail("argmin"),
xfail("argsort"),
xfail("as_strided"),
xfail("as_strided", "partial_views"),
xfail("as_strided_copy"),
xfail("as_strided_scatter"),
xfail("bernoulli"),
xfail("_batch_norm_with_update"),
xfail("block_diag"),
xfail("broadcast_shapes"),
xfail("cauchy"),
xfail("cdist"),
xfail("cholesky"),
xfail("cholesky_inverse"),
xfail("cholesky_solve"),
xfail("chunk"),
xfail("clamp"),
xfail("clamp_max"),
xfail("clamp_min"),
xfail("combinations"),
xfail("complex"),
xfail("constant_pad_nd"),
xfail("count_nonzero"),
xfail("cross"),
xfail("cummax"),
xfail("cummin"),
xfail("cumsum"),
xfail("cumulative_trapezoid"),
xfail("diagonal_scatter"),
xfail("dist"),
xfail("dot"),
xfail("empty"),
xfail("empty_strided"),
xfail("empty_like"),
xfail("empty_permuted"),
xfail("expand_copy"),
xfail("exponential"),
xfail("equal"),
xfail("eye"),
xfail("fft.fft2"),
xfail("fft.fft"),
xfail("fft.fftn"),
xfail("fft.fftshift"),
xfail("fft.ifft2"),
xfail("fft.ifft"),
xfail("fft.ifftshift"),
xfail("fft.ihfft2"),
xfail("fft.ihfft"),
xfail("fft.ihfftn"),
xfail("fft.irfft2"),
xfail("fft.irfftn"),
xfail("fft.rfft2"),
xfail("fft.rfft"),
xfail("fft.rfftn"),
xfail("fill"),
xfail("flip"),
xfail("fliplr"),
xfail("flipud"),
xfail("floor_divide"),
xfail("fmax"),
xfail("fmin"),
xfail("frexp"),
xfail("full"),
xfail("full_like"),
xfail("gather"),
xfail("geometric"),
xfail("geqrf"),
xfail("grid_sampler_2d"),
xfail("gradient"),
xfail("heaviside"),
xfail("histc"),
xfail("histogram"),
xfail("histogramdd"),
xfail("index_add"),
xfail("index_copy"),
xfail("index_fill"),
xfail("index_put"),
xfail("index_reduce", "prod"),
xfail("index_reduce", "mean"),
xfail("index_reduce", "amax"),
xfail("index_reduce", "amin"),
xfail("index_select"),
xfail("isin"),
xfail("kthvalue"),
xfail("linalg.cholesky"),
xfail("linalg.cholesky_ex"),
xfail("linalg.cross"),
xfail("linalg.det"),
xfail("linalg.det", "singular"),
xfail("linalg.eig"),
xfail("linalg.eigvals"),
xfail("linalg.householder_product"),
xfail("linalg.inv"),
xfail("linalg.inv_ex"),
xfail("linalg.ldl_factor"),
xfail("linalg.ldl_factor_ex"),
xfail("linalg.ldl_solve"),
xfail("linalg.lstsq"),
xfail("linalg.lstsq", "grad_oriented"),
xfail("linalg.lu"),
xfail("linalg.lu_factor"),
xfail("linalg.lu_factor_ex"),
xfail("linalg.lu_solve"),
xfail("linalg.matrix_norm"),
xfail("linalg.matrix_power"),
xfail("linalg.matrix_rank"),
xfail("linalg.matrix_rank", "hermitian"),
xfail("linalg.multi_dot"),
xfail("linalg.norm"),
xfail("linalg.norm", "subgradients_at_zero"),
xfail("linalg.pinv"),
xfail("linalg.pinv", "hermitian"),
xfail("linalg.slogdet"),
xfail("linalg.solve"),
xfail("linalg.solve_ex"),
xfail("linalg.solve_triangular"),
xfail("linalg.tensorinv"),
xfail("linalg.tensorsolve"),
xfail("linalg.vander"),
xfail("linalg.vecdot"),
xfail("linspace"),
xfail("linspace", "tensor_overload"),
xfail("log_normal"),
xfail("logcumsumexp"),
xfail("logdet"),
xfail("logspace"),
xfail("logspace", "tensor_overload"),
xfail("logsumexp"),
xfail("lu"),
xfail("lu_solve"),
xfail("lu_unpack"),
xfail("masked_fill"),
xfail("masked_scatter"),
xfail("masked_select"),
xfail("masked.amax"),
xfail("masked.amin"),
xfail("masked.argmax"),
xfail("masked.argmin"),
xfail("masked.cumprod"),
xfail("masked.cumsum"),
xfail("masked.logsumexp"),
xfail("masked.median"),
xfail("matrix_exp"),
xfail("max", "binary"),
xfail("max", "reduction_with_dim"),
xfail("maximum"),
xfail("median"),
xfail("min", "binary"),
xfail("min", "reduction_with_dim"),
xfail("minimum"),
xfail("mode"),
xfail("msort"),
xfail("multinomial"),
xfail("mv"),
xfail("max_pool2d_with_indices_backward", ""),
xfail("nanmean"),
xfail("nanmedian"),
xfail("nanquantile"),
xfail("nansum"),
xfail("native_batch_norm"),
xfail("native_dropout_backward"),
xfail("narrow_copy"),
xfail("ne"),
xfail("new_empty"),
xfail("new_empty_strided"),
xfail("transpose"),
xfail("nn.functional.adaptive_avg_pool1d"),
xfail("nn.functional.adaptive_avg_pool2d"),
xfail("nn.functional.adaptive_avg_pool3d"),
xfail("nn.functional.adaptive_max_pool1d"),
xfail("nn.functional.adaptive_max_pool2d"),
xfail("nn.functional.adaptive_max_pool3d"),
xfail("nn.functional.alpha_dropout"),
xfail("nn.functional.avg_pool1d"),
xfail("nn.functional.avg_pool2d"),
xfail("nn.functional.avg_pool3d"),
xfail("nn.functional.batch_norm"),
xfail("nn.functional.batch_norm", "without_cudnn"),
xfail("nn.functional.bilinear"),
xfail("nn.functional.binary_cross_entropy"),
xfail("nn.functional.binary_cross_entropy_with_logits"),
xfail("nn.functional.celu"),
xfail("nn.functional.conv1d"),
xfail("nn.functional.conv2d"),
xfail("nn.functional.conv3d"),
xfail("nn.functional.conv_transpose1d"),
xfail("nn.functional.conv_transpose2d"),
xfail("nn.functional.conv_transpose3d"),
xfail("nn.functional.cosine_similarity"),
xfail("nn.functional.ctc_loss"),
xfail("nn.functional.dropout"),
xfail("nn.functional.dropout2d"),
xfail("nn.functional.dropout3d"),
xfail("nn.functional.elu"),
xfail("nn.functional.fractional_max_pool2d"),
xfail("nn.functional.fractional_max_pool3d"),
xfail("nn.functional.glu"),
xfail("nn.functional.grid_sample"),
xfail("nn.functional.group_norm"),
xfail("nn.functional.hardshrink"),
xfail("nn.functional.hardsigmoid"),
xfail("nn.functional.hardswish"),
xfail("nn.functional.hardtanh"),
xfail("nn.functional.huber_loss"),
xfail("nn.functional.instance_norm"),
xfail("nn.functional.interpolate", "area"),
xfail("nn.functional.interpolate", "nearest"),
xfail("nn.functional.interpolate", "nearest-exact"),
xfail("nn.functional.leaky_relu"),
xfail("nn.functional.linear"),
xfail("nn.functional.local_response_norm"),
xfail("nn.functional.logsigmoid"),
xfail("nn.functional.margin_ranking_loss"),
xfail("nn.functional.max_pool1d"),
xfail("nn.functional.max_pool2d"),
xfail("nn.functional.max_pool3d"),
xfail("nn.functional.max_unpool1d"),
xfail("nn.functional.max_unpool1d", "grad"),
xfail("nn.functional.max_unpool2d"),
xfail("nn.functional.max_unpool2d", "grad"),
xfail("nn.functional.max_unpool3d"),
xfail("nn.functional.max_unpool3d", "grad"),
xfail("nn.functional.mish"),
xfail("nn.functional.mse_loss"),
xfail("nn.functional.multi_margin_loss"),
xfail("nn.functional.multi_head_attention_forward"),
xfail("nn.functional.multilabel_margin_loss"),
xfail("nn.functional.multilabel_soft_margin_loss"),
xfail("nn.functional.normalize"),
xfail("nn.functional.pad", "constant"),
xfail("nn.functional.pad", "reflect"),
xfail("nn.functional.pad", "replicate"),
xfail("nn.functional.pad", "replicate_negative"),
xfail("nn.functional.pairwise_distance"),
xfail("nn.functional.pdist"),
xfail("nn.functional.pixel_shuffle"),
xfail("nn.functional.pixel_unshuffle"),
xfail("nn.functional.prelu"),
xfail("nn.functional.relu6"),
xfail("nn.functional.rrelu"),
xfail("nn.functional.selu"),
xfail("nn.functional.smooth_l1_loss"),
xfail("nn.functional.soft_margin_loss"),
xfail("nn.functional.softplus"),
xfail("nn.functional.softshrink"),
xfail("nn.functional.threshold"),
xfail("nn.functional.triplet_margin_loss"),
xfail("nn.functional.triplet_margin_with_distance_loss"),
xfail("nn.functional.unfold"),
xfail("nn.functional.upsample_nearest"),
xfail("nonzero"),
xfail("normal"),
xfail("normal", "number_mean"),
xfail("normal", "in_place"),
xfail("ormqr"),
xfail("ones"),
xfail("pca_lowrank"),
xfail("permute_copy"),
xfail("pinverse"),
xfail("polar"),
xfail("put"),
xfail("quantile"),
xfail("rand_like"),
xfail("randint_like"),
xfail("randint"),
xfail("randn"),
xfail("randn_like"),
xfail("renorm"),
xfail("repeat_interleave"),
xfail("resize_"),
xfail("resize_as_"),
xfail("roll"),
xfail("rot90"),
xfail("rsub"),
xfail("scalar_tensor"),
xfail("scatter_add"),
xfail("scatter_reduce", "amax"),
xfail("scatter_reduce", "amin"),
xfail("scatter_reduce", "mean"),
xfail("scatter_reduce", "prod"),
xfail("scatter_reduce", "sum"),
xfail("searchsorted"),
xfail("select"),
xfail("select_scatter"),
xfail("sort"),
xfail("sparse.sampled_addmm"),
xfail("sparse.mm", "reduce"),
xfail("special.airy_ai"),
xfail("special.bessel_j0"),
xfail("special.bessel_j1"),
xfail("special.bessel_y0"),
xfail("special.bessel_y1"),
xfail("special.chebyshev_polynomial_t"),
xfail("special.chebyshev_polynomial_u"),
xfail("special.entr"),
xfail("special.erfcx"),
xfail("special.hermite_polynomial_h"),
xfail("special.hermite_polynomial_he"),
xfail("special.i0e"),
xfail("special.i1"),
xfail("special.i1e"),
xfail("special.laguerre_polynomial_l"),
xfail("special.log_ndtr"),
xfail("special.modified_bessel_i0"),
xfail("special.modified_bessel_i1"),
xfail("special.modified_bessel_k0"),
xfail("special.modified_bessel_k1"),
xfail("special.ndtri"),
xfail("special.scaled_modified_bessel_k0"),
xfail("special.scaled_modified_bessel_k1"),
xfail("special.spherical_bessel_j0"),
xfail("special.xlog1py"),
xfail("special.zeta"),
xfail("squeeze", "multiple"),
xfail("squeeze_copy"),
xfail("signal.windows.bartlett"),
xfail("signal.windows.blackman"),
xfail("signal.windows.cosine"),
xfail("signal.windows.exponential"),
xfail("signal.windows.gaussian"),
xfail("signal.windows.general_cosine"),
xfail("signal.windows.general_hamming"),
xfail("signal.windows.hamming"),
xfail("signal.windows.hann"),
xfail("signal.windows.nuttall"),
xfail("signal.windows.kaiser"),
xfail("stack"),
xfail("std"),
xfail("std", "unbiased"),
xfail("std_mean"),
xfail("std_mean", "unbiased"),
xfail("stft"),
xfail("svd_lowrank"),
xfail("t_copy"),
xfail("take"),
xfail("tensor_split"),
xfail("to_sparse"),
xfail("trace"),
xfail("trapezoid"),
xfail("trapz"),
xfail("triangular_solve"),
xfail("unbind"),
xfail("unfold"),
xfail("unfold_copy"),
xfail("uniform"),
xfail("unflatten"),
xfail("unique_consecutive"),
xfail("unique"),
xfail("unsafe_split"),
xfail("unsafe_chunk"),
xfail("_unsafe_masked_index"),
xfail("_unsafe_masked_index_put_accumulate"),
xfail("var_mean"),
xfail("var_mean", "unbiased"),
xfail("vdot"),
xfail("view_copy"),
xfail("zeros"),
# ops inside this might even fail without dtensor
# tests, as we rescale op db common test size factor (i.e. L, M, S)
# which triggered the original function run failures with input
# generation becomes wrong, we skip them for now but should enable later.
# TODO: need to clean this list and remove all cases
skip("argwhere"),
skip("cumprod"),
skip("__rmatmul__"),
skip("meshgrid", "list_of_tensors"),
skip("meshgrid", "variadic_tensors"),
skip("nn.functional.scaled_dot_product_attention"),
skip("nn.functional.softmin"),
skip("nn.functional.embedding"),
skip("nn.functional.embedding_bag"),
skip("nn.functional.feature_alpha_dropout", "with_train"),
skip("nn.functional.feature_alpha_dropout", "without_train"),
skip("nn.functional.hinge_embedding_loss"),
skip("nn.functional.cosine_embedding_loss"),
skip("fft.hfft"),
skip("fft.hfft2"),
skip("fft.hfft2"),
skip("fft.hfftn"),
skip("fft.ifftn"),
skip("fft.irfft"),
skip("istft"),
skip("isclose"),
skip("isreal"),
skip("matmul"),
skip("masked.mean"),
skip("masked.var"),
skip("masked.std"),
skip("masked.normalize"),
skip("prod"),
skip("_segment_reduce", "lengths"),
skip("_segment_reduce", "offsets"),
# TODO: fix the following ops
skip("squeeze"),
}
# Add a list of ops that are currently failing BW pass
skip_bw = [
None, # corresponds to the transpose ops 'H' and 'T'
"torch.bucketize",
"torch.conj_physical",
"torch.eq",
"torch.isfinite",
"torch.isnan",
]
OP_DB_WORLD_SIZE = 4
# DEVICE_TYPE = "cuda" if torch.cuda.is_available() and torch.cuda.device_count() >= OP_DB_WORLD_SIZE else "cpu"
# TODO: debug cuda illegal memory access issue and re-enable cuda tests
DEVICE_TYPE = "cpu"
class TestDTensorOps(DTensorOpTestBase):
@property
def world_size(self) -> int:
return OP_DB_WORLD_SIZE
# only allow float dytpe for now, we can relax this constraint
# when feel necessary later (i.e when adding quantization support).
@suppress_warnings
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps("TestDTensorOps", "test_dtensor_op_db", dtensor_fails)
def test_dtensor_op_db(self, dtype, op):
self.mesh = DeviceMesh(DEVICE_TYPE, torch.arange(self.world_size))
# test each op with dist tensor inputs and normal inputs
def test():
samples = op.sample_inputs(DEVICE_TYPE, dtype, requires_grad=True)
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
self.run_dtensor_crossref(op.op, args, kwargs)
# we need to figure out a way to test the out variant, out variant testing
# is tricky, as we need to pre allocate the dtensor out, some of them rely
# on sharding placements to be pre-known (i.e. mm.out)
# if isinstance(expected, torch.Tensor) and op.supports_out:
# func(*args, **kwargs, out=expected)
self.check_dtensor_func(test, op)
def assert_ref_dtensor_equal(self, dtensor_rs, rs):
flat_dtensor_rs = pytree.tree_leaves(dtensor_rs)
flat_rs = pytree.tree_leaves(rs)
self.assertEqual(len(flat_dtensor_rs), len(flat_rs))
for dtensor_r, r in zip(flat_dtensor_rs, flat_rs):
if not isinstance(r, torch.Tensor):
continue
self.assertIsInstance(dtensor_r, torch.Tensor)
self.assertEqualOnRank(
dtensor_r.shape,
r.shape,
f"Shape mismatch! original shape:{r.shape}, dtensor shape: {dtensor_r.shape}",
)
self.assertEqualOnRank(
dtensor_r.requires_grad,
r.requires_grad,
"op result requires_grad mismatch!"
f"original requires_grad: {r.requires_grad}, "
f"dtensor requires_grad: {dtensor_r.requires_grad}",
)
self.assertEqualOnRank(dtensor_r, r)
def run_dtensor_crossref(self, func, args, kwargs):
to_dtensor = DTensorConverter(self.mesh, args, kwargs)
def concat_res_if_necessary(func, res: object) -> object:
# concat the result on corresponding dim for ops like
# split, so that we can call backward on a single tensor
if (resolve_name(func) is not None) and ("split" in resolve_name(func)):
dim = args[2] if len(args) == 3 else 0
return torch.cat(res, dim=dim)
else:
return res
# TODO: also handle cases where func raise an exception
rs = func(*args, **kwargs)
rs = concat_res_if_necessary(func, rs)
def to_replicate(e: object) -> object:
return e.full_tensor() if isinstance(e, DTensor) else e
try:
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# for every comb of sharding choices, we test if it works
for dtensor_args, dtensor_kwargs in to_dtensor:
# Only attempt if we managed to convert all tensors to DTensor
# (if any of them failed, we're in a mixed tensor situation and
# this is not allowed in DTensor)
if to_dtensor.successful():
# Handle special cases first if there's any
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
dtensor_rs = func(*dtensor_args, **dtensor_kwargs)
# we need to skip tests containing tensors of zero elements for now.
# see issue: https://github.com/pytorch/tau/issues/470
# TODO remove this once issue above fixed.
flat_args = pytree.tree_leaves(dtensor_rs)
if any(
isinstance(e, torch.Tensor) and e.numel() == 0
for e in flat_args
):
continue
# redistribute/all_gather the results to compare with normal output
dtensor_rs = tree_map(to_replicate, dtensor_rs)
dtensor_rs = concat_res_if_necessary(func, dtensor_rs)
try:
if resolve_name(func) not in skip_bw:
if isinstance(dtensor_rs, DTensor):
dtensor_rs.to_local().sum().backward()
elif isinstance(dtensor_rs, tuple):
dtensor_rs[0].to_local().sum().backward()
except Exception as e:
# TODO(anj): Remove this guard exception after gaining more confidence.
if torch.distributed.get_rank() == 0:
print(
f"failed to run BW: {resolve_name(func)}, {func}, {str(e)})"
)
self.assert_ref_dtensor_equal(dtensor_rs, rs)
else:
raise RuntimeError(
f"failed to convert args to DTensor; "
f"originally (*{args}, **{kwargs})"
)
except Exception as e:
raise RuntimeError(
f"failed to run: {resolve_name(func)}, with (*{args}, **{kwargs})"
) from e
return rs
def check_dtensor_func(self, test_func, opinfo, dry_run=False):
try:
test_func()
except Exception:
if not dry_run:
raise
if dist.get_rank() == 0:
if opinfo.variant_test_name:
print(f"xfail('{opinfo.name}', '{opinfo.variant_test_name}'),")
else:
print(f"xfail('{opinfo.name}'),")
# only instantiate tests for DEVICE_TYPE alone (i.e. either CPU or GPU)
instantiate_device_type_tests(TestDTensorOps, globals(), only_for=(DEVICE_TYPE,))
if __name__ == "__main__":
run_tests()
|