1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
# Owner(s): ["oncall: distributed"]
import sys
import torch
from torch.distributed._tensor import (
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
funcol = torch.ops.c10d_functional
class TestEmbeddingOp(DTensorTestBase):
def _apply_sharding(self, embedding_mod, shard_dim, device_mesh):
def shard_embedding_fn(name, module, device_mesh):
for name, param in module.named_parameters():
dist_param = torch.nn.Parameter(
distribute_tensor(param, device_mesh, [Shard(shard_dim)])
)
module.register_parameter(name, dist_param)
sharded_embedding = distribute_module(
embedding_mod, device_mesh, shard_embedding_fn
)
return sharded_embedding
def _run_embedding_op_test(
self,
device_mesh,
shard_dim,
input_size,
num_embeddings,
embedding_dim,
**kwargs,
):
# Use same seed.
torch.manual_seed(0)
local_embedding = torch.nn.Embedding(
num_embeddings,
embedding_dim,
device=self.device_type,
**kwargs,
)
sharded_embedding = torch.nn.Embedding(
num_embeddings,
embedding_dim,
device=self.device_type,
**kwargs,
)
# Shard the parameter of local embedding and set it to sharded embedding.
sharded_embedding.weight = torch.nn.Parameter(
local_embedding.weight.detach().clone()
)
sharded_embedding = self._apply_sharding(
sharded_embedding, shard_dim, device_mesh
)
# Run sharded computation
torch.manual_seed(10)
inp = torch.randint(
0, num_embeddings, tuple(input_size), device=self.device_type
)
target = torch.empty(
*inp.size(), embedding_dim, dtype=torch.float, device=self.device_type
).random_(0, 1)
dist_inp = distribute_tensor(inp, device_mesh, [Replicate()])
# fwd computation, ensure no comm happened
with CommDebugMode() as fwd_mode:
dist_output = sharded_embedding(dist_inp)
self.assertEqual(fwd_mode.get_total_counts(), 0)
output = dist_output.full_tensor()
# Run local computation
local_output = local_embedding(inp)
# Verify
self.assertEqual(local_output, output)
# Use a sample cross entry loss to verify backward and grad computation.
loss = torch.nn.CrossEntropyLoss()
emb_loss = loss(
output,
target,
)
emb_dup_loss = loss(
local_output,
target,
)
# local embedding backward
emb_dup_loss.backward()
# sharded embedding bwd computation, ensure no comm happened
with CommDebugMode() as bwd_mode:
emb_loss.backward()
self.assertEqual(bwd_mode.get_total_counts(), 0)
gradient = sharded_embedding.weight.grad.full_tensor()
local_grad = local_embedding.weight.grad
# Verify gradient.
self.assertEqual(gradient, local_grad)
# Validate for torch.nn.functional.embedding version.
local_output = torch.nn.functional.embedding(
inp,
local_embedding.weight,
**kwargs,
)
sharded_output = torch.nn.functional.embedding(
DTensor.from_local(inp, device_mesh, [Replicate()], run_check=False),
sharded_embedding.weight,
**kwargs,
)
self.assertEqual(local_output, sharded_output.full_tensor())
@with_comms
def test_sharded_embedding_colwise(self):
mesh = self.build_device_mesh()
self._run_embedding_op_test(mesh, 1, [5, 4], 17, 12)
self._run_embedding_op_test(mesh, 1, [6, 7, 6], 21, 11)
self._run_embedding_op_test(mesh, 1, [8, 6, 5, 4], 23, 13)
self._run_embedding_op_test(mesh, 1, [8, 6, 5, 4, 7], 23, 16)
self._run_embedding_op_test(mesh, 1, [4], 15, 14)
self._run_embedding_op_test(mesh, 1, [34], 15, 14, padding_idx=10)
self._run_embedding_op_test(mesh, 1, [8, 6, 5, 4], 23, 13, padding_idx=12)
@with_comms
def test_sharded_embedding_colwise_max_norm_errors(self):
mesh = self.build_device_mesh()
with self.assertRaisesRegex(
NotImplementedError,
"aten.embedding_renorm_.default does not have a sharding strategy registered.",
):
self._run_embedding_op_test(
mesh, 1, [8, 6, 5, 4], 23, 13, padding_idx=12, max_norm=2.0
)
@with_comms
def test_sharded_embedding_rowwise(self):
mesh = self.build_device_mesh()
# test correctness
self._run_embedding_op_test(mesh, 0, [5, 12], 16, 22)
self._run_embedding_op_test(mesh, 0, [6, 7, 6], 13, 22)
self._run_embedding_op_test(mesh, 0, [34], 15, 14, padding_idx=10)
from torch.distributed.tensor._ops._embedding_ops import _MaskPartial
# test collectives
embedding_mod = torch.nn.Embedding(10, 20, device=self.device_type)
sharded_embedding = self._apply_sharding(embedding_mod, 0, mesh)
inp = torch.randint(0, 10, (8, 8), device=self.device_type)
replicated_inp = DTensor.from_local(inp, mesh, [Replicate()], run_check=False)
output = sharded_embedding(replicated_inp)
self.assertIsInstance(output.placements[0], _MaskPartial)
comm_mode = CommDebugMode()
with comm_mode:
output.full_tensor()
self.assertEqual(comm_mode.get_total_counts(), 1)
self.assertEqual(comm_mode.get_comm_counts()[funcol.all_reduce], 1)
@with_comms
def test_multiple_embeddings_rowwise(self):
mesh = self.build_device_mesh()
inp = torch.randint(0, 10, (4, 4), device=self.device_type)
replicated_inp = DTensor.from_local(inp, mesh, [Replicate()], run_check=False)
from torch.distributed.tensor._ops._embedding_ops import _MaskPartial
# case 1: two embeddings with the same shape, thus sharing the underying _MaskPartial
# and MaskBuffer, because of cache hit from sharding propagation
emb1 = torch.nn.Embedding(10, 23, device=self.device_type)
sharded_emb1 = self._apply_sharding(emb1, 0, mesh)
output1 = sharded_emb1(replicated_inp)
emb2 = torch.nn.Embedding(10, 29, device=self.device_type)
sharded_emb2 = self._apply_sharding(emb2, 0, mesh)
output2 = sharded_emb2(replicated_inp)
partial_placement1 = output1.placements[0]
self.assertIsInstance(partial_placement1, _MaskPartial)
output1.full_tensor()
partial_placement2 = output2.placements[0]
self.assertIsInstance(partial_placement2, _MaskPartial)
output2.full_tensor()
self.assertTrue(id(partial_placement1), id(partial_placement2))
# case 2: two embeddings with the same logical_dim_size, but different logical_shape
# thus they will have different _MaskPartial placements (with no cache hit)
emb3 = torch.nn.Embedding(10, 29, device=self.device_type)
sharded_emb3 = self._apply_sharding(emb3, 0, mesh)
output3 = sharded_emb3(replicated_inp)
partial_placement3 = output3.placements[0]
self.assertIsInstance(partial_placement3, _MaskPartial)
output2.full_tensor()
# not equal because of different logical_shape, despite of same logical_dim_size
self.assertNotEqual(partial_placement1, partial_placement3)
if __name__ == "__main__":
run_tests()
|