File: test_experimental_ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (192 lines) | stat: -rw-r--r-- 7,888 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]


import torch
import torch.distributed as dist
from torch.distributed._tensor import DeviceMesh, distribute_tensor, Replicate
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    with_comms,
)


ITER_TIME = 10
LR = 0.001


class DistOtherOpsTest(DTensorTestBase):
    @property
    def world_size(self) -> int:
        # hard code world size to 2
        return 2

    @with_comms
    def test_slice(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        shard_spec = [Replicate()]

        input_list = torch.rand(ITER_TIME, 1024, 10)
        grad_output_list = torch.rand(ITER_TIME, 1024, 5) * 1e-3

        for i in range(ITER_TIME):
            inp = input_list[i].to(self.device_type).requires_grad_()
            grad_output = grad_output_list[i].to(self.device_type)

            # droppath  with dtensor
            inp_dtensor = distribute_tensor(inp, device_mesh, shard_spec)
            grad_output_dtensor = distribute_tensor(
                grad_output, device_mesh, shard_spec
            )
            output = inp_dtensor[:, :5]
            output.backward(grad_output_dtensor)

            # nll with plain tensor
            output_gt = inp[:, :5]
            output_gt.backward(grad_output)

            output_diff_abs = output.to_local() - output_gt
            output_diff_rel = output_diff_abs / (torch.abs(output_gt) + 1e-8)
            output_mse_abs = torch.mean(output_diff_abs * output_diff_abs).item()
            output_mse_rel = torch.mean(output_diff_rel * output_diff_rel).item()

            grad_diff_abs = inp_dtensor.grad.to_local() - inp.grad
            grad_diff_rel = grad_diff_abs / (torch.abs(inp.grad) + 1e-8)
            grad_mse_abs = torch.mean(grad_diff_abs * grad_diff_abs).item()
            grad_mse_rel = torch.mean(grad_diff_rel * grad_diff_rel).item()

            self.assertTrue(
                output_mse_abs <= 1e-6,
                f"Too large absolute mse for output, expected less equal 1e-6, got {output_mse_abs}",
            )
            self.assertTrue(
                output_mse_rel <= 1e-6,
                f"Too large relative mse for output, expected less equal 1e-6, got {output_mse_rel}",
            )
            self.assertTrue(
                grad_mse_abs <= 1e-6,
                f"Too large absolute mse for gradient, expected less equal 1e-6, got {grad_mse_abs}",
            )
            self.assertTrue(
                grad_mse_rel <= 1e-6,
                f"Too large relative mse for gradient, expected less equal 1e-6, got {grad_mse_rel}",
            )

    @with_comms
    def test_bernoulli(self):
        rank = dist.get_rank()
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        shard_spec = [Replicate()]

        input_list = torch.rand(ITER_TIME, 1024, 10)
        grad_output_list = torch.rand(ITER_TIME, 1024, 10) * 1e-3

        for i in range(ITER_TIME):
            inp = input_list[i].to(self.device_type).requires_grad_()
            grad_output = grad_output_list[i].to(self.device_type)

            # bernoulli  with dtensor
            inp_dtensor = distribute_tensor(inp, device_mesh, shard_spec)
            grad_output_dtensor = distribute_tensor(
                grad_output, device_mesh, shard_spec
            )
            output = torch.bernoulli(inp_dtensor)
            output.backward(grad_output_dtensor)

            send_output_tensor = output.to_local()
            recv_output_tensor = torch.zeros_like(send_output_tensor)

            send_grad_tensor = inp_dtensor.grad.to_local()
            recv_grad_tensor = torch.zeros_like(send_grad_tensor)

            send_op_1 = dist.P2POp(dist.isend, send_output_tensor, 1 ^ rank)
            send_op_2 = dist.P2POp(dist.isend, send_grad_tensor, 1 ^ rank)
            recv_op_1 = dist.P2POp(dist.irecv, recv_output_tensor, 1 ^ rank)
            recv_op_2 = dist.P2POp(dist.irecv, recv_grad_tensor, 1 ^ rank)

            reqs = dist.batch_isend_irecv([send_op_1, send_op_2, recv_op_1, recv_op_2])
            for req in reqs:
                req.wait()

            output_diff_abs = send_output_tensor - recv_output_tensor
            output_diff_rel = output_diff_abs / (torch.abs(recv_output_tensor) + 1e-8)
            output_mse_abs = torch.mean(output_diff_abs * output_diff_abs).item()
            output_mse_rel = torch.mean(output_diff_rel * output_diff_rel).item()

            grad_diff_abs = send_grad_tensor - recv_grad_tensor
            grad_diff_rel = grad_diff_abs / (torch.abs(recv_grad_tensor) + 1e-8)
            grad_mse_abs = torch.mean(grad_diff_abs * grad_diff_abs).item()
            grad_mse_rel = torch.mean(grad_diff_rel * grad_diff_rel).item()

            self.assertTrue(
                output_mse_abs <= 1e-6,
                f"Too large absolute mse for output, expected less equal 1e-6, got {output_mse_abs}",
            )
            self.assertTrue(
                output_mse_rel <= 1e-6,
                f"Too large relative mse for output, expected less equal 1e-6, got {output_mse_rel}",
            )
            self.assertTrue(
                grad_mse_abs <= 1e-6,
                f"Too large absolute mse for gradient, expected less equal 1e-6, got {grad_mse_abs}",
            )
            self.assertTrue(
                grad_mse_rel <= 1e-6,
                f"Too large relative mse for gradient, expected less equal 1e-6, got {grad_mse_rel}",
            )

    @with_comms
    def test_nll(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        shard_spec = [Replicate()]

        pred_list = torch.rand(ITER_TIME, 1024, 10)
        target_list = torch.randint(0, 10, (ITER_TIME, 1024), dtype=torch.long)

        criterion = torch.nn.CrossEntropyLoss()

        for i in range(ITER_TIME):
            pred = pred_list[i].to(self.device_type).requires_grad_()
            target = target_list[i].to(self.device_type)

            # nll with dtensor
            pred_dtensor = distribute_tensor(pred, device_mesh, shard_spec)
            target_dtensor = distribute_tensor(target, device_mesh, shard_spec)
            loss = criterion(pred_dtensor, target_dtensor)
            loss.backward()

            # nll with plain tensor
            loss_gt = criterion(pred, target)
            loss_gt.backward()

            loss_diff_abs = loss.to_local() - loss_gt
            loss_diff_rel = loss_diff_abs / (torch.abs(loss_gt) + 1e-8)
            loss_mse_abs = torch.mean(loss_diff_abs * loss_diff_abs).item()
            loss_mse_rel = torch.mean(loss_diff_rel * loss_diff_rel).item()

            grad_diff_abs = pred_dtensor.grad.to_local() - pred.grad
            grad_diff_rel = grad_diff_abs / (torch.abs(pred.grad) + 1e-8)
            grad_mse_abs = torch.mean(grad_diff_abs * grad_diff_abs).item()
            grad_mse_rel = torch.mean(grad_diff_rel * grad_diff_rel).item()

            self.assertTrue(
                loss_mse_abs <= 1e-6,
                f"Too large absolute mse for loss, expected less equal 1e-6, got {loss_mse_abs}",
            )
            self.assertTrue(
                loss_mse_rel <= 1e-6,
                f"Too large relative mse for loss, expected less equal 1e-6, got {loss_mse_rel}",
            )
            self.assertTrue(
                grad_mse_abs <= 1e-6,
                f"Too large absolute mse for gradient, expected less equal 1e-6, got {grad_mse_abs}",
            )
            self.assertTrue(
                grad_mse_rel <= 1e-6,
                f"Too large relative mse for gradient, expected less equal 1e-6, got {grad_mse_rel}",
            )


if __name__ == "__main__":
    run_tests()