1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import torch
from torch.distributed._tensor import DeviceMesh, DTensor, Replicate, Shard, zeros
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
class DTensorInitOpsTest(DTensorTestBase):
def _run_init_op(self, init_op, *args, **kwargs):
device_mesh = self.build_device_mesh()
shard_spec = [Shard(0)]
input_size = (8, 4)
input_tensor = torch.randn(*input_size, device=self.device_type)
dtensor = DTensor.from_local(input_tensor, device_mesh, shard_spec)
local_tensor_clone = torch.clone(input_tensor)
torch.manual_seed(self.rank)
local_tensor_clone = init_op(local_tensor_clone, *args, **kwargs)
torch.manual_seed(self.rank)
dtensor = init_op(dtensor, *args, **kwargs)
self.assertEqual(local_tensor_clone, dtensor.to_local())
@with_comms
def test_init_ops(self):
# NOTE: random init tests are moved to test_random_ops.py
self._run_init_op(torch.nn.init.constant_, 2.4)
class DTensorConstructorTest(DTensorTestBase):
@property
def world_size(self):
return 4
def _run_init_op(self, init_op, dist_init_op, eq_op, *args, **kwargs):
# 1d mesh test
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
placements_list = [[Shard(0)], [Shard(1)], [Shard(2)], [Replicate()]]
# even sharding
tensor_size = [4, 8, 12]
for placements in placements_list:
local_tensor_size = tensor_size.copy()
if isinstance(placements[0], Shard):
shard_dim = placements[0].dim
local_tensor_size[shard_dim] //= self.world_size
dist_tensor = dist_init_op(
tensor_size,
*args,
**kwargs,
device_mesh=device_mesh,
placements=placements,
)
ones_expected = init_op(local_tensor_size, *args, **kwargs)
eq_op(ones_expected, dist_tensor.to_local())
# uneven sharding
tensor_size = [5, 10, 15]
for placements in placements_list:
dist_tensor = dist_init_op(
tensor_size,
*args,
**kwargs,
device_mesh=device_mesh,
placements=placements,
)
if isinstance(placements[0], Shard):
shard_dim = placements[0].dim
exp_tensor_list = list(
torch.chunk(
init_op(tensor_size, *args, **kwargs),
self.world_size,
dim=shard_dim,
)
)
if self.rank < len(exp_tensor_list):
eq_op(exp_tensor_list[self.rank], dist_tensor.to_local())
else:
exp_tensor = init_op(tensor_size, *args, **kwargs)
eq_op(exp_tensor, dist_tensor.to_local())
# empty shape
local_tensor = dist_init_op(
[], *args, **kwargs, device_mesh=device_mesh, placements=[Replicate()]
).to_local()
expected_tensor = init_op([], *args, **kwargs)
eq_op(expected_tensor, local_tensor)
@with_comms
def test_ones(self):
self._run_init_op(
torch.ones,
torch.distributed._tensor.ones,
self.assertEqual,
requires_grad=True,
)
@with_comms
def test_empty(self):
self._run_init_op(
torch.empty,
torch.distributed._tensor.empty,
lambda x, y: (x.shape == y.shape)
and (x.dtype == y.dtype)
and (x.layout == y.layout),
requires_grad=True,
)
@with_comms
def test_full(self):
self._run_init_op(
torch.full,
torch.distributed._tensor.full,
self.assertEqual,
123.4,
requires_grad=True,
)
@with_comms
def test_zeros(self):
self._run_init_op(
torch.zeros,
torch.distributed._tensor.zeros,
self.assertEqual,
requires_grad=True,
)
@with_comms
def test_zeros_full_mesh(self):
# construct a cuda device 1d mesh
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
placements = [Shard(0)]
size = [32, 3]
dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
self.assertEqual(dist_tensor.size(), torch.Size(size))
local_tensor = dist_tensor.to_local()
self.assertEqual(local_tensor.size(), torch.Size([8, 3]))
local_tensor = torch.zeros(8, 3)
self.assertEqual(dist_tensor.to_local(), local_tensor)
self.assertEqual(dist_tensor.device.type, self.device_type)
# 1d sharded unevenly
size = [31, 3]
dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
self.assertEqual(dist_tensor.size(), torch.Size(size))
local_tensor = dist_tensor.to_local()
if self.rank <= 2:
self.assertEqual(local_tensor.size(), torch.Size([8, 3]))
self.assertEqual(torch.zeros(8, 3), local_tensor)
else:
self.assertEqual(local_tensor.size(), torch.Size([7, 3]))
self.assertEqual(torch.zeros(7, 3), local_tensor)
# construct a cuda device mesh with 2d: shard, replicate
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
placements = [Shard(0), Replicate()]
size = [32, 4]
dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
self.assertEqual(dist_tensor.size(), torch.Size(size))
local_tensor = dist_tensor.to_local()
self.assertEqual(local_tensor.size(), torch.Size([16, 4]))
self.assertEqual(local_tensor, torch.zeros([16, 4]))
# construct a cuda device mesh with 2d: shard, shard
placements = [Shard(0), Shard(1)]
size = [32, 4]
dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
self.assertEqual(dist_tensor.size(), torch.Size(size))
local_tensor = dist_tensor.to_local()
self.assertEqual(local_tensor.size(), torch.Size([16, 2]))
self.assertEqual(local_tensor, torch.zeros([16, 2]))
# 2d sharded unevenly
placements = [Shard(0), Shard(1)]
size = [31, 3]
dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
self.assertEqual(dist_tensor.size(), torch.Size(size))
local_tensor = dist_tensor.to_local()
if self.rank == 0:
self.assertEqual(local_tensor, torch.zeros([16, 2]))
elif self.rank == 1:
self.assertEqual(local_tensor, torch.zeros([16, 1]))
elif self.rank == 2:
self.assertEqual(local_tensor, torch.zeros([15, 2]))
elif self.rank == 3:
self.assertEqual(local_tensor, torch.zeros([15, 1]))
@with_comms
def test_zeros_submesh(self):
# default world_size is 4
# construct a cuda device 1d mesh, with no sub pg initialized
sub_mesh_list = [0, 3]
mesh = DeviceMesh(self.device_type, sub_mesh_list)
placements = [Shard(0)]
size = [32, 3]
dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
self.assertEqual(dist_tensor.size(), torch.Size(size))
local_tensor = dist_tensor.to_local()
if self.rank in sub_mesh_list:
self.assertEqual(local_tensor.size(), torch.Size([16, 3]))
self.assertEqual(local_tensor, torch.zeros([16, 3]))
else:
self.assertEqual(local_tensor.size(), torch.Size([0]))
self.assertEqual(local_tensor, torch.zeros(0))
# construct a cuda device 1d mesh: unevenly, with subpg initialized
sub_mesh_list = [0, 1, 3]
mesh = DeviceMesh(self.device_type, sub_mesh_list)
placements = [Shard(0)]
size = [32, 3]
dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
self.assertEqual(dist_tensor.size(), torch.Size(size))
local_tensor = dist_tensor.to_local()
if self.rank in sub_mesh_list:
if self.rank != 3:
self.assertEqual(local_tensor.size(), torch.Size([11, 3]))
self.assertEqual(local_tensor, torch.zeros([11, 3]))
else:
self.assertEqual(local_tensor.size(), torch.Size([10, 3]))
self.assertEqual(local_tensor, torch.zeros([10, 3]))
else:
self.assertEqual(local_tensor.size(), torch.Size([0]))
self.assertEqual(local_tensor, torch.tensor([]))
# construct a cuda device 2d mesh, with no subpg initialized
sub_mesh_list = [[0], [3]]
mesh = DeviceMesh(self.device_type, sub_mesh_list)
placements = [Shard(0), Shard(1)]
size = [32, 3]
dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
self.assertEqual(dist_tensor.size(), torch.Size(size))
local_tensor = dist_tensor.to_local()
if self.rank in [0, 3]:
self.assertEqual(local_tensor.size(), torch.Size([16, 3]))
self.assertEqual(local_tensor, torch.zeros([16, 3]))
else:
self.assertEqual(local_tensor.size(), torch.Size([0]))
self.assertEqual(local_tensor, torch.tensor([]))
if __name__ == "__main__":
run_tests()
|