File: test_init.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (254 lines) | stat: -rw-r--r-- 9,696 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]

import torch
from torch.distributed._tensor import DeviceMesh, DTensor, Replicate, Shard, zeros
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    with_comms,
)


class DTensorInitOpsTest(DTensorTestBase):
    def _run_init_op(self, init_op, *args, **kwargs):
        device_mesh = self.build_device_mesh()
        shard_spec = [Shard(0)]
        input_size = (8, 4)
        input_tensor = torch.randn(*input_size, device=self.device_type)
        dtensor = DTensor.from_local(input_tensor, device_mesh, shard_spec)
        local_tensor_clone = torch.clone(input_tensor)
        torch.manual_seed(self.rank)
        local_tensor_clone = init_op(local_tensor_clone, *args, **kwargs)
        torch.manual_seed(self.rank)
        dtensor = init_op(dtensor, *args, **kwargs)
        self.assertEqual(local_tensor_clone, dtensor.to_local())

    @with_comms
    def test_init_ops(self):
        # NOTE: random init tests are moved to test_random_ops.py
        self._run_init_op(torch.nn.init.constant_, 2.4)


class DTensorConstructorTest(DTensorTestBase):
    @property
    def world_size(self):
        return 4

    def _run_init_op(self, init_op, dist_init_op, eq_op, *args, **kwargs):
        # 1d mesh test
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        placements_list = [[Shard(0)], [Shard(1)], [Shard(2)], [Replicate()]]

        # even sharding
        tensor_size = [4, 8, 12]
        for placements in placements_list:
            local_tensor_size = tensor_size.copy()
            if isinstance(placements[0], Shard):
                shard_dim = placements[0].dim
                local_tensor_size[shard_dim] //= self.world_size

            dist_tensor = dist_init_op(
                tensor_size,
                *args,
                **kwargs,
                device_mesh=device_mesh,
                placements=placements,
            )
            ones_expected = init_op(local_tensor_size, *args, **kwargs)
            eq_op(ones_expected, dist_tensor.to_local())

        # uneven sharding
        tensor_size = [5, 10, 15]
        for placements in placements_list:
            dist_tensor = dist_init_op(
                tensor_size,
                *args,
                **kwargs,
                device_mesh=device_mesh,
                placements=placements,
            )
            if isinstance(placements[0], Shard):
                shard_dim = placements[0].dim
                exp_tensor_list = list(
                    torch.chunk(
                        init_op(tensor_size, *args, **kwargs),
                        self.world_size,
                        dim=shard_dim,
                    )
                )
                if self.rank < len(exp_tensor_list):
                    eq_op(exp_tensor_list[self.rank], dist_tensor.to_local())
            else:
                exp_tensor = init_op(tensor_size, *args, **kwargs)
                eq_op(exp_tensor, dist_tensor.to_local())

        # empty shape
        local_tensor = dist_init_op(
            [], *args, **kwargs, device_mesh=device_mesh, placements=[Replicate()]
        ).to_local()
        expected_tensor = init_op([], *args, **kwargs)
        eq_op(expected_tensor, local_tensor)

    @with_comms
    def test_ones(self):
        self._run_init_op(
            torch.ones,
            torch.distributed._tensor.ones,
            self.assertEqual,
            requires_grad=True,
        )

    @with_comms
    def test_empty(self):
        self._run_init_op(
            torch.empty,
            torch.distributed._tensor.empty,
            lambda x, y: (x.shape == y.shape)
            and (x.dtype == y.dtype)
            and (x.layout == y.layout),
            requires_grad=True,
        )

    @with_comms
    def test_full(self):
        self._run_init_op(
            torch.full,
            torch.distributed._tensor.full,
            self.assertEqual,
            123.4,
            requires_grad=True,
        )

    @with_comms
    def test_zeros(self):
        self._run_init_op(
            torch.zeros,
            torch.distributed._tensor.zeros,
            self.assertEqual,
            requires_grad=True,
        )

    @with_comms
    def test_zeros_full_mesh(self):
        # construct a cuda device 1d mesh
        mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
        placements = [Shard(0)]
        size = [32, 3]
        dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
        self.assertEqual(dist_tensor.size(), torch.Size(size))
        local_tensor = dist_tensor.to_local()
        self.assertEqual(local_tensor.size(), torch.Size([8, 3]))

        local_tensor = torch.zeros(8, 3)
        self.assertEqual(dist_tensor.to_local(), local_tensor)

        self.assertEqual(dist_tensor.device.type, self.device_type)

        # 1d sharded unevenly
        size = [31, 3]
        dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
        self.assertEqual(dist_tensor.size(), torch.Size(size))
        local_tensor = dist_tensor.to_local()
        if self.rank <= 2:
            self.assertEqual(local_tensor.size(), torch.Size([8, 3]))
            self.assertEqual(torch.zeros(8, 3), local_tensor)
        else:
            self.assertEqual(local_tensor.size(), torch.Size([7, 3]))
            self.assertEqual(torch.zeros(7, 3), local_tensor)

        # construct a cuda device mesh with 2d: shard, replicate
        mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
        placements = [Shard(0), Replicate()]
        size = [32, 4]
        dist_tensor = zeros(size, device_mesh=mesh, placements=placements)

        self.assertEqual(dist_tensor.size(), torch.Size(size))
        local_tensor = dist_tensor.to_local()
        self.assertEqual(local_tensor.size(), torch.Size([16, 4]))
        self.assertEqual(local_tensor, torch.zeros([16, 4]))

        # construct a cuda device mesh with 2d: shard, shard
        placements = [Shard(0), Shard(1)]
        size = [32, 4]
        dist_tensor = zeros(size, device_mesh=mesh, placements=placements)

        self.assertEqual(dist_tensor.size(), torch.Size(size))
        local_tensor = dist_tensor.to_local()
        self.assertEqual(local_tensor.size(), torch.Size([16, 2]))
        self.assertEqual(local_tensor, torch.zeros([16, 2]))

        # 2d sharded unevenly
        placements = [Shard(0), Shard(1)]
        size = [31, 3]
        dist_tensor = zeros(size, device_mesh=mesh, placements=placements)

        self.assertEqual(dist_tensor.size(), torch.Size(size))
        local_tensor = dist_tensor.to_local()
        if self.rank == 0:
            self.assertEqual(local_tensor, torch.zeros([16, 2]))
        elif self.rank == 1:
            self.assertEqual(local_tensor, torch.zeros([16, 1]))
        elif self.rank == 2:
            self.assertEqual(local_tensor, torch.zeros([15, 2]))
        elif self.rank == 3:
            self.assertEqual(local_tensor, torch.zeros([15, 1]))

    @with_comms
    def test_zeros_submesh(self):
        # default world_size is 4
        # construct a cuda device 1d mesh, with no sub pg initialized
        sub_mesh_list = [0, 3]
        mesh = DeviceMesh(self.device_type, sub_mesh_list)
        placements = [Shard(0)]
        size = [32, 3]
        dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
        self.assertEqual(dist_tensor.size(), torch.Size(size))
        local_tensor = dist_tensor.to_local()

        if self.rank in sub_mesh_list:
            self.assertEqual(local_tensor.size(), torch.Size([16, 3]))
            self.assertEqual(local_tensor, torch.zeros([16, 3]))
        else:
            self.assertEqual(local_tensor.size(), torch.Size([0]))
            self.assertEqual(local_tensor, torch.zeros(0))

        # construct a cuda device 1d mesh: unevenly, with subpg initialized
        sub_mesh_list = [0, 1, 3]
        mesh = DeviceMesh(self.device_type, sub_mesh_list)
        placements = [Shard(0)]
        size = [32, 3]
        dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
        self.assertEqual(dist_tensor.size(), torch.Size(size))
        local_tensor = dist_tensor.to_local()

        if self.rank in sub_mesh_list:
            if self.rank != 3:
                self.assertEqual(local_tensor.size(), torch.Size([11, 3]))
                self.assertEqual(local_tensor, torch.zeros([11, 3]))
            else:
                self.assertEqual(local_tensor.size(), torch.Size([10, 3]))
                self.assertEqual(local_tensor, torch.zeros([10, 3]))
        else:
            self.assertEqual(local_tensor.size(), torch.Size([0]))
            self.assertEqual(local_tensor, torch.tensor([]))

        # construct a cuda device 2d mesh, with no subpg initialized
        sub_mesh_list = [[0], [3]]
        mesh = DeviceMesh(self.device_type, sub_mesh_list)
        placements = [Shard(0), Shard(1)]
        size = [32, 3]
        dist_tensor = zeros(size, device_mesh=mesh, placements=placements)
        self.assertEqual(dist_tensor.size(), torch.Size(size))
        local_tensor = dist_tensor.to_local()

        if self.rank in [0, 3]:
            self.assertEqual(local_tensor.size(), torch.Size([16, 3]))
            self.assertEqual(local_tensor, torch.zeros([16, 3]))
        else:
            self.assertEqual(local_tensor.size(), torch.Size([0]))
            self.assertEqual(local_tensor, torch.tensor([]))


if __name__ == "__main__":
    run_tests()