1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import itertools
from typing import cast, List, Optional
import torch
import torch.nn.functional as F
from torch.distributed import DeviceMesh, init_device_mesh
from torch.distributed.tensor import (
distribute_tensor,
DTensor,
Partial,
Placement,
Replicate,
Shard,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_unless_torch_gpu,
with_comms,
)
class DistMatrixOpsTest(DTensorTestBase):
@with_comms
def test_addmm(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
shard_spec = [Shard(0)]
replica_spec = [Replicate()]
tensor_to_shard = torch.randn(12, 8)
mat1 = distribute_tensor(tensor_to_shard, device_mesh, shard_spec)
tensor_to_replicate = torch.randn(8, 4)
mat2 = distribute_tensor(tensor_to_replicate, device_mesh, replica_spec)
input_tensor = torch.randn(4)
input = distribute_tensor(input_tensor, device_mesh, replica_spec)
dist_res = torch.addmm(input, mat1, mat2)
local_res = torch.addmm(input_tensor, tensor_to_shard, tensor_to_replicate)
self.assertEqual(dist_res.full_tensor(), local_res)
@with_comms
def test_addmm_empty_operand(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
shard_spec = [Shard(0)]
replica_spec = [Replicate()]
tensor_to_shard = torch.randn(12, 0)
mat1 = distribute_tensor(tensor_to_shard, device_mesh, shard_spec)
tensor_to_replicate = torch.randn(0, 4)
mat2 = distribute_tensor(tensor_to_replicate, device_mesh, replica_spec)
input_tensor = torch.randn(4)
inp = distribute_tensor(input_tensor, device_mesh, replica_spec)
dist_res = torch.addmm(inp, mat1, mat2)
local_res = torch.addmm(input_tensor, tensor_to_shard, tensor_to_replicate)
self.assertEqual(dist_res.full_tensor(), local_res)
@with_comms
def test_addmm_auto_redistribute(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
shard0_spec = [Shard(0)]
shard1_spec = [Shard(1)]
replica_spec = [Replicate()]
tensor_to_shard1 = torch.randn(12, 8, requires_grad=True)
mat1 = distribute_tensor(tensor_to_shard1, device_mesh, shard1_spec)
tensor_to_shard0 = torch.randn(8, 4, requires_grad=True)
mat2 = distribute_tensor(tensor_to_shard0, device_mesh, shard0_spec)
input_tensor = torch.randn(4, requires_grad=True)
input = distribute_tensor(input_tensor, device_mesh, replica_spec)
local_res = torch.addmm(input_tensor, tensor_to_shard1, tensor_to_shard0)
dist_res = torch.addmm(input, mat1, mat2)
# test if addmm output is a partial
self.assertIsInstance(dist_res, DTensor)
self.assertIsInstance(dist_res.placements[0], Partial)
# test if result is the same as tensor
dist_local_res = dist_res.full_tensor()
self.assertEqual(local_res, dist_local_res)
# backward checks
dist_local_res.sum().backward()
local_res.sum().backward()
self.assertIsNotNone(mat2.grad)
self.assertEqual(mat2.grad.full_tensor(), tensor_to_shard0.grad)
@with_comms
def test_mm(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
shard0_spec = Shard(0)
shard1_spec = Shard(1)
replica_spec = Replicate()
t1 = torch.randn(12, 8, requires_grad=True)
t2 = torch.randn(8, 16, requires_grad=True)
local_res = torch.mm(t1, t2)
def test_placement_comb(
placements1: List[Placement], placements2: List[Placement]
) -> None:
dt1 = distribute_tensor(t1, device_mesh, placements1)
dt2 = distribute_tensor(t2, device_mesh, placements2)
dist_res: DTensor = cast(DTensor, torch.mm(dt1, dt2)).redistribute(
device_mesh, [replica_spec]
)
self.assertEqual(dist_res.to_local(), local_res)
# backward
grad_dist_res = torch.ones_like(dist_res)
dist_res.backward(grad_dist_res)
self.assertIsNotNone(dt1.grad)
placement_specs = [shard0_spec, shard1_spec, replica_spec]
shard_specs_comb = list(itertools.product(placement_specs, placement_specs))
for spec in shard_specs_comb:
test_placement_comb([spec[0]], [spec[1]])
@with_comms
def test_matmul(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
dim = 128
x = torch.randn(8, dim)
A = torch.randn(dim, dim)
y = torch.matmul(x, A)
# Prepare DTensors
dx = distribute_tensor(x, device_mesh, [Replicate()])
dA = distribute_tensor(A, device_mesh, [Shard(0)])
# Use `inference_mode` to test DTensor's capability of decomposing
# `matmul` op
with torch.inference_mode():
dy = torch.matmul(dx, dA)
self.assertEqual(y, dy.full_tensor())
@with_comms
def test_t(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
shard_spec = [Shard(0)]
tensor_to_transpose = torch.randn(12, 8, requires_grad=True)
mat = distribute_tensor(tensor_to_transpose, device_mesh, shard_spec)
tranposed_mat = mat.t()
self.assertEqual(tranposed_mat.size(), torch.Size([8, 12]))
self.assertEqual(tranposed_mat.placements, [Shard(1)])
tranposed_mat2 = tranposed_mat.t()
self.assertEqual(tranposed_mat2.size(), torch.Size([12, 8]))
self.assertEqual(tranposed_mat2.placements, shard_spec)
@with_comms
def test_t_partial(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
a = torch.randn(12, 8)
b = torch.randn(8, 4)
c = torch.mm(a, b).t()
da = distribute_tensor(a, device_mesh, [Shard(1)])
db = distribute_tensor(b, device_mesh, [Shard(0)])
# mm(da, db) should return a Partial tensor.
# transposing it should keep it Partial
dc = torch.mm(da, db).t()
self.assertTrue(isinstance(dc.placements[0], Partial))
# check that the local and distributed op results match
self.assertEqual(
c,
dc.redistribute(device_mesh, [Replicate()]).to_local(),
)
# baddbmm introduces nan occasionally on CPU: https://github.com/pytorch/pytorch/issues/80588
@with_comms
@skip_unless_torch_gpu
def test_baddbmm(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
tensor = torch.rand(4, 4, 8, device=self.device_type, requires_grad=True)
batch_1 = torch.rand(4, 4, 8, device=self.device_type, requires_grad=True)
batch_2 = torch.rand(4, 8, 8, device=self.device_type, requires_grad=True)
def test_placement_comb(
tensor_placements: List[Placement],
batch_1_placements: List[Placement],
batch_2_placements: List[Placement],
beta: int,
alpha: int,
batch_1_grad: Optional[torch.Tensor],
) -> None:
tensor_dt = distribute_tensor(tensor, device_mesh, tensor_placements)
batch_1_dt = distribute_tensor(batch_1, device_mesh, batch_1_placements)
batch_2_dt = distribute_tensor(batch_2, device_mesh, batch_2_placements)
dist_res = cast(
DTensor,
torch.baddbmm(
tensor_dt, batch_1_dt, batch_2_dt, beta=beta, alpha=alpha
),
).redistribute(device_mesh, [Replicate()])
dist_local_res = dist_res.to_local()
assert not torch.isnan(local_result).any()
assert not torch.isnan(dist_local_res).any()
self.assertEqual(dist_local_res.detach(), local_result.detach())
# TODO: add test backward
# grad_dist_res = torch.ones_like(dist_res)
# dist_res.backward(grad_dist_res)
# self.assertIsNotNone(batch_1_dt.grad)
# batch_1_grad_local = batch_1_dt.grad.redistribute(
# device_mesh, [Replicate()]
# ).to_local()
# self.assertEqual(batch_1_grad_local, batch_1_grad)
shard0_spec = Shard(0)
shard1_spec = Shard(1)
shard2_spec = Shard(2)
replica_spec = Replicate()
shard_specs = [shard0_spec, shard1_spec, shard2_spec, replica_spec]
shard_specs_comb = list(
itertools.product(shard_specs, shard_specs, shard_specs)
)
# If beta is 0, input tensor will be ignored
numeric_params_comb = [
(0.0, 0.5), # zero-beta
(0.8, 0.5), # non-zero-beta
]
for beta, alpha in numeric_params_comb:
local_result = torch.baddbmm(
tensor, batch_1, batch_2, beta=beta, alpha=alpha
)
grad_local_res = torch.ones_like(local_result)
local_result.backward(grad_local_res)
# test all combos
for spec in shard_specs_comb:
test_placement_comb(
[spec[0]], [spec[1]], [spec[2]], beta, alpha, batch_1.grad
)
@with_comms
def test_bmm(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
mat1 = torch.rand(4, 8, 4, device=self.device_type, requires_grad=True)
mat2 = torch.rand(4, 4, 8, device=self.device_type, requires_grad=True)
local_result = torch.bmm(mat1, mat2)
grad_local_res = torch.ones_like(local_result)
local_result.backward(grad_local_res)
def test_placement_comb(
placements1: List[Placement],
placements2: List[Placement],
) -> None:
mat1_dt = distribute_tensor(mat1, device_mesh, placements1)
mat2_dt = distribute_tensor(mat2, device_mesh, placements2)
dist_res = cast(DTensor, torch.bmm(mat1_dt, mat2_dt)).redistribute(
device_mesh, [Replicate()]
)
dist_local_res = dist_res.to_local()
self.assertEqual(dist_local_res, local_result)
# test backward
# TODO: figure out (replicate, shard1) fail on backward
# it generates a different grad shape
grad_dist_res = torch.ones_like(dist_res)
dist_res.backward(grad_dist_res)
self.assertIsNotNone(mat1_dt.grad)
mat1_dt_grad = cast(DTensor, mat1_dt.grad)
mat1_grad_local = mat1_dt_grad.redistribute(
device_mesh, [Replicate()]
).to_local()
self.assertEqual(mat1_grad_local, mat1.grad)
shard0_spec = Shard(0)
shard1_spec = Shard(1)
shard2_spec = Shard(2)
replica_spec = Replicate()
placement_specs = [shard0_spec, shard1_spec, shard2_spec, replica_spec]
shard_specs_comb = list(itertools.product(placement_specs, placement_specs))
# tests that currently pass
for spec in shard_specs_comb:
test_placement_comb([spec[0]], [spec[1]])
@with_comms
@skip_unless_torch_gpu
def test_scaled_dot_product_attention(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
comm_mode = CommDebugMode()
# bsz, n_heads, slen, head_dim
query = torch.rand(
(4, 8, 8, 8),
device=self.device_type,
dtype=torch.bfloat16,
requires_grad=True,
)
key = torch.rand(
(4, 8, 8, 8),
device=self.device_type,
dtype=torch.bfloat16,
requires_grad=True,
)
value = torch.rand(
(4, 8, 8, 8),
device=self.device_type,
dtype=torch.bfloat16,
requires_grad=True,
)
dist_query = distribute_tensor(query, device_mesh, [Shard(1)])
dist_key = distribute_tensor(key, device_mesh, [Shard(1)])
dist_value = distribute_tensor(value, device_mesh, [Shard(1)])
from torch.nn.attention import sdpa_kernel, SDPBackend
available_backends = []
dropout_p = 0.0
# TODO: Add test cases where is_causal=False and an attention mask is provided.
# Gaps include missing op support for aten.masked_fill_.Scalar.
is_causal = True
enable_gqa = False
params = torch.backends.cuda.SDPAParams(
query, key, value, None, dropout_p, is_causal, enable_gqa
)
if torch.backends.cuda.can_use_flash_attention(params, debug=False):
available_backends.append(SDPBackend.FLASH_ATTENTION)
if torch.backends.cuda.can_use_efficient_attention(params, debug=False):
available_backends.append(SDPBackend.EFFICIENT_ATTENTION)
for backend in available_backends:
with sdpa_kernel(backends=[backend]):
out = F.scaled_dot_product_attention(
query, key, value, dropout_p=dropout_p, is_causal=is_causal
)
with comm_mode:
dist_out = F.scaled_dot_product_attention(
dist_query,
dist_key,
dist_value,
dropout_p=dropout_p,
is_causal=is_causal,
)
self.assertEqual(comm_mode.get_total_counts(), 0)
self.assertTrue(dist_out.placements[0].is_shard(dim=1))
self.assertEqual(dist_out.full_tensor(), out)
out.sum().backward()
with comm_mode:
dist_out.sum().backward()
self.assertEqual(comm_mode.get_total_counts(), 0)
self.assertTrue(dist_query.grad.placements[0].is_shard(dim=1))
self.assertEqual(dist_query.grad.full_tensor(), query.grad)
self.assertTrue(dist_key.grad.placements[0].is_shard(dim=1))
self.assertEqual(dist_key.grad.full_tensor(), key.grad)
self.assertTrue(dist_value.grad.placements[0].is_shard(dim=1))
self.assertEqual(dist_value.grad.full_tensor(), value.grad)
@skipIfRocm
@skip_unless_torch_gpu
@with_comms()
def test_dtensor_mm(self):
"""
Test mm with DTensor with 2D mesh.
We need to add the test here since we only test 1D mesh in test_dtensor_ops.py.
Also, we added tests for the corner case where one of the 2D dimension is 1.
# TODO: we need to test more DTensor ops with 2D mesh, especially when 1 of the
mesh dimension of the 2D mesh is 1.
"""
mesh_0 = init_device_mesh(self.device_type, (self.world_size // 2, 2))
mesh_1 = init_device_mesh(self.device_type, (self.world_size, 1))
mesh_2 = init_device_mesh(self.device_type, (1, self.world_size))
for mesh in [mesh_0, mesh_1, mesh_2]:
lhs = torch.randn(256, 128)
rhs = torch.randn(128, 256)
mm_result = lhs @ rhs
lhs_dtensor = distribute_tensor(lhs, mesh, [Shard(dim=0), Replicate()])
rhs_dtensor = distribute_tensor(rhs, mesh, [Replicate(), Shard(dim=1)])
dtensor_result = lhs_dtensor @ rhs_dtensor
self.assertEqual(dtensor_result.full_tensor(), mm_result)
if __name__ == "__main__":
run_tests()
|